Publication: Diophant denklemlerde klasik ve modüler yaklaşımlar
Date
Authors
Authors
Mutlu, Elif Kızıldere
Advisor
Soydan, Gökhan
Language
Type
Publisher:
Bursa Uludağ Üniversitesi
Journal Title
Journal ISSN
Volume Title
Abstract
Tez beş bölümden oluşmaktadır. İlk iki bölümde eliptik eğriler, modüler formlar ve Galois temsilleri ile ilgili temel bilgiler ve bazı önemli teoremler verilmiştir. Üçüncü bölümde ise literatürden iyi bilinen Frey-Hellegouarch eliptik eğrileri ile ilişkili Galois temsillerinin modülerliğinden bilinen sonuçları kullanan modüler metot tanıtılır. Sabit d ve k pozitif tam sayılar, aralarında asal ve min{d, k} > 1 olsun. Tezin dördüncü bölümünde ilk olarak, 4 | k, 30 < k < 724 ve 2k −1 bir tek asalın kuvveti iken GRH varsayımı altında x 2 + d y = k z genelleştirilmiş Ramanujan-Nagell denkleminin tek pozitif tam sayı çözümünün (x, y, z) = (k − 1, 1, 2) olduğu modüler metot kullanılarak gösterilir. Böylece Terai sanısı kısmen doğrulanmış olur. İkinci olarak, x 2 + (2k − 1)y = k z denkleminin y ∈ {3, 5} iken belirli koşullar altında bir (x, y, z) pozitif tam sayı çözüme sahip olmadığı gösterilir. Bir p asal sayısı için Q( √ −p) imajiner kuadratik cisminin sınıf sayısı h = h(−p) ile gösterilsin. Dördüncü bölümde son olarak s ≥ 0, r ≥ 3, n ≥ 3, h ∈ {1, 2, 3} ve (x, y) = 1 olmak üzere x 2 + p s = 2r y n Diophant denkleminin n > 7 asal iken çözüme sahip olmadığı durumlar belirlenir ve ˘ n ∈ {3, 4, 5, 7} iken bu denklemin tüm pozitif tam sayı çözümleri bulunur. İspatlarda yöntemsel olarak modüler metot, simplektik metot, MAGMA programında Gherga ve Siksek tarafından geliştirilen Thue-Mahler çözücü ve cebirsel sayılar teorisinin elementer yöntemleri kullanılır. Son bölümde tezdeki sonuçlar tartışılarak bazı açık problemlerden bahsedilir.
The thesis consists of five chapters. The first two chapters provide basic information about elliptic curves, modular forms, and Galois representations along with some important the- orems. The third chapter introduces the modular method using results about the modularity of Galois representations related to the well-known Frey-Hellegouarch elliptic curves from the literature. Let d and k be fixed, coprime positive integers such that min{d, k} > 1. In the fourth chapter of the thesis, first, under the assumption of the GRH, the generalized Ramanujan- Nagell equation x2 + (2k − 1)y = kz is shown to have the only positive integer so- lution (x, y, z) = (k − 1, 1, 2) using the modular method, given that k ≡ 0 (mod 4), 30 < k < 724 and 2k − 1 is an odd prime power. Thus, Terai’s conjecture is partially verified. Secondly, it is shown that the equation x2 + (2k − 1)y = kz has no a positive integer solution (x, y, z) under certain conditions when y ∈ {3, 5}. Denote by h = h(−p) the class number of the imaginary quadratic field Q(√−p) with p prime. Finally, in the fourth chapter, it is determined that the Diophantine equation x2 + ps = 2ryn has no solution for n > 7 prime when s ≥ 0, r ≥ 3, n ≥ 3, h ∈ {1, 2, 3} and gcd(x, y) = 1. When n ∈ {3, 4, 5, 7}, all positive integer solutions to this equation are found. The method used in the proofs include the modular method, the symplectic method, Thue-Mahler solver developed by Gherga and Siksek in the MAGMA program and the elementary methods of algebraic number theory. The final chapter discussed the results of the thesis and addresses some open problems.
The thesis consists of five chapters. The first two chapters provide basic information about elliptic curves, modular forms, and Galois representations along with some important the- orems. The third chapter introduces the modular method using results about the modularity of Galois representations related to the well-known Frey-Hellegouarch elliptic curves from the literature. Let d and k be fixed, coprime positive integers such that min{d, k} > 1. In the fourth chapter of the thesis, first, under the assumption of the GRH, the generalized Ramanujan- Nagell equation x2 + (2k − 1)y = kz is shown to have the only positive integer so- lution (x, y, z) = (k − 1, 1, 2) using the modular method, given that k ≡ 0 (mod 4), 30 < k < 724 and 2k − 1 is an odd prime power. Thus, Terai’s conjecture is partially verified. Secondly, it is shown that the equation x2 + (2k − 1)y = kz has no a positive integer solution (x, y, z) under certain conditions when y ∈ {3, 5}. Denote by h = h(−p) the class number of the imaginary quadratic field Q(√−p) with p prime. Finally, in the fourth chapter, it is determined that the Diophantine equation x2 + ps = 2ryn has no solution for n > 7 prime when s ≥ 0, r ≥ 3, n ≥ 3, h ∈ {1, 2, 3} and gcd(x, y) = 1. When n ∈ {3, 4, 5, 7}, all positive integer solutions to this equation are found. The method used in the proofs include the modular method, the symplectic method, Thue-Mahler solver developed by Gherga and Siksek in the MAGMA program and the elementary methods of algebraic number theory. The final chapter discussed the results of the thesis and addresses some open problems.
Description
Source:
Keywords:
Keywords
Üstel Diophant denklem, Eliptik egri, Galois temsili, modüler form, S-tam sayı nokta, Thue-Mahler denklemi, Thue denklemi, Exponential Diophantine equation, Elliptic curve, Galois representation, Modular form, S-Integral point, Thue-Mahler equation, Thue equation