Yayın: On the solution of the monge-ampere equation ZxxZyy-Z2xy = f(x,y) with quadratic right side
Tarih
Kurum Yazarları
Arslan, Kadri
Bulca, Betül
Murathan, Cengizhan
Yazarlar
Aminov, Yu A.
Bayram, Bengü Kılıç
Öztürk, Günay
Danışman
Dil
Türü
Yayıncı:
B Verkin Inst Low Temperature Physics & Engineering Nas Ukra
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Özet
For the Monge-Ampere equation Z(xx)Z(yy) - Z(xy)(2) = b(20)(x2)+b(11).xy+b(02y)(2)+ b(00) we consider the question on the existence of a solution Z(x, y) in the class of polynomials such that Z = Z(x, y) is a graph of a convex surface. If Z is a polynomial of odd degree, then the solution does not exist. If Z is a polynomial of 4-th degree and 4b(20)b(02) - b(11)(2) > 0, then the solution also does not exist. If 4b(20)b(02) - b(11)(2) = 0, then we have solutions.
Açıklama
Kaynak:
Anahtar Kelimeler:
Konusu
Mathematics, Physics, Monge-Ampere equation, Polynomial, Convex surface
Alıntı
Aminov, Y. vd. (2011). "On the solution of the monge-ampere equation ZxxZyy-Z2xy = f(x,y) with quadratic right side". Journal of Mathematical Physics, Analysis, Geometry, 7(3), 203-211.
