Publication:
Kinematics & compliance validation of a vehicle suspension and steering kinematics optimization using neural networks

dc.contributor.authorAgakisi, Gurur
dc.contributor.authorÖztürk, Ferruh
dc.contributor.buuauthorÖZTÜRK, FERRUH
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentOtomotiv Mühendisliği Bölümü
dc.contributor.researcheridFRD-1816-2022
dc.date.accessioned2024-10-03T05:35:19Z
dc.date.available2024-10-03T05:35:19Z
dc.date.issued2023-01-01
dc.description.abstractPhysical and virtual K & C analyses are performed to achieve the vehicle dynamics targets by finding the opti-mum variables such as the position of hardpoints or stiff-nesses of bushings. However, finding appropriate design variables that meet all the aims is challenging. This paper evaluates a hardpoint optimization approach to attain sus-pension K & C characteristic objectives with the design of experiments, neural networks, and genetic algorithm, based on a reference compact-sized prototype vehicle. The MBD model correlation is provided to optimize the hardpoints to improve the vehicle's steering kinematics concerning Ackerman error and camber angle variation that are out of target in baseline suspension. The results showed that NN based optimization strategy to define the hardpoints has sig-nificantly improved targeted characteristics compared to conventional response surface methods in the limited design space.
dc.identifier.doi10.5755/j02.mech.31983
dc.identifier.eissn2029-6983
dc.identifier.endpage251
dc.identifier.issn1392-1207
dc.identifier.issue3
dc.identifier.startpage243
dc.identifier.urihttps://doi.org/10.5755/j02.mech.31983
dc.identifier.urihttps://mechanika.ktu.lt/index.php/Mech/article/view/31983
dc.identifier.urihttps://avesis.uludag.edu.tr/yayin/d6770948-1280-42b4-997d-67d0628b7f32/kinematics-compliance-validation-of-a-vehicle-suspension-and-steering-kinematics-optimization-using-neural-networks
dc.identifier.urihttps://hdl.handle.net/11452/45730
dc.identifier.volume29
dc.identifier.wos001023605800009
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherKaunas Univ Technol
dc.relation.journalMechanika
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectResponse-surface methodology
dc.subjectGenetic algorithm
dc.subjectParameters
dc.subjectImprovement
dc.subjectStability
dc.subjectDesign
dc.subjectSystem
dc.subjectSteering kinematics
dc.subjectNeural networks
dc.subjectHardpoint optimization
dc.subjectScience & technology
dc.subjectTechnology
dc.subjectMechanics
dc.titleKinematics & compliance validation of a vehicle suspension and steering kinematics optimization using neural networks
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/Otomotiv Mühendisliği Bölümü
relation.isAuthorOfPublication407521cf-c5bd-4b05-afca-6412ef47700b
relation.isAuthorOfPublication.latestForDiscovery407521cf-c5bd-4b05-afca-6412ef47700b

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Öztürk_Ağakişi_2023.pdf
Size:
983.37 KB
Format:
Adobe Portable Document Format

Collections