Publication:
Vibration of FG nano-sized beams embedded in Winkler elastic foundation and with various boundary conditions

dc.contributor.authorCivalek, Ömer
dc.contributor.buuauthorUzun, Büşra
dc.contributor.buuauthorYaylı, Mustafa Özgür
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentİnşaat Mühendisliği
dc.contributor.orcid0000-0003-2231-170X
dc.contributor.researcheridGGA-0877-2022
dc.contributor.scopusid57208629064
dc.contributor.scopusid44661926700
dc.date.accessioned2022-12-19T07:34:42Z
dc.date.available2022-12-19T07:34:42Z
dc.date.issued2020-11-11
dc.description.abstractIn the current study, vibration analysis of functionally graded (FG) nano-sized beams resting on a elastic foundation is presented via a finite element method. The elastic foundation is simulated by using one-parameter Winkler type elastic foundation model. Euler-Bernoulli beam theory and Eringen's nonlocal elasticity theory are utilized to model the functionally graded nano-sized beams with various boundary conditions such as simply supported at both ends (S-S), clamped-clamped (C-C) and clamped-simply supported (C-S). Material properties of functionally graded nanobeam vary across the thickness direction according to the power-law distribution. The vibration behaviors of functionally graded nanobeam composed of alumina (Al2O3) and steel are shown using nonlocal finite element formulation. The importance of this paper is the utilize of shape functions and the Eringen's nonlocal elasticity theory to set up the stiffness matrices and mass matrices of the functionally graded nano-sized beam resting on Winkler elastic foundation for free vibration analysis. Bending stiffness, foundation stiffness and mass matrices are obtained to realize the solution of vibration problem of the FG nanobeam. The influences of power-law exponent (k), dimensionless nonlocal parameters (e(0)a/L), dimensionless Winkler foundation parameters (KW), mode numbers and boundary conditions on frequencies are investigated via several numerical examples and shown by a number of tables and figures.
dc.identifier.citationUzun, B. vd. (2020). "Vibration of FG nano-sized beams embedded in Winkler elastic foundation and with various boundary conditions". Mechanics Based Design of Structures and Machines.
dc.identifier.issn1539-7734
dc.identifier.scopus2-s2.0-85096099955
dc.identifier.urihttps://doi.org/10.1080/15397734.2020.1846560
dc.identifier.urihttps://www.tandfonline.com/doi/full/10.1080/15397734.2020.1846560
dc.identifier.urihttp://hdl.handle.net/11452/29948
dc.identifier.wos000588527100001
dc.indexed.wosSCIE
dc.language.isoen
dc.publisherTaylor & Francis
dc.relation.collaborationYurt dışı
dc.relation.journalMechanics Based Design of Structures and Machines
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectNonlocal elasticity theory
dc.subjectfunctionally graded nano-sized beam
dc.subjectFinite element method
dc.subjectEuler-Bernoulli beam theory
dc.subjectWinkler foundation
dc.subjectFunctionally graded beams
dc.subjectBuckling analysis
dc.subjectNanobeams
dc.subjectMatrix
dc.subjectFormulation
dc.subjectEuler
dc.subjectMechanics
dc.subjectAlumina
dc.subjectAluminum alloys
dc.subjectAluminum oxide
dc.subjectBoundary conditions
dc.subjectContinuum mechanics
dc.subjectElasticity
dc.subjectFinite element method
dc.subjectFoundations
dc.subjectNanowires
dc.subjectStiffness
dc.subjectStiffness matrix
dc.subjectElastic foundation model
dc.subjectEuler Bernoulli beam theory
dc.subjectFinite element formulations
dc.subjectFree-vibration analysis
dc.subjectNon-local elasticity theories
dc.subjectPower law distribution
dc.subjectVarious boundary conditions
dc.subjectWinkler elastic foundation
dc.subjectVibration analysis
dc.subject.scopusNonlocal Elasticity; Strain Gradient; Nonlocal
dc.subject.wosMechanics
dc.titleVibration of FG nano-sized beams embedded in Winkler elastic foundation and with various boundary conditions
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/İnşaat Mühendisliği
local.indexed.atScopus
local.indexed.atWOS

Files

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: