Yayın:
Semi-analytical and machine learning approaches for investigating the torsional vibration behavior of nano-sized viscoelastic tubes

dc.contributor.authorKadıoğlu, Hayrullah Gün
dc.contributor.buuauthorYAYLI, MUSTAFA ÖZGÜR
dc.contributor.buuauthorDELİKTAŞ, BABÜR
dc.contributor.buuauthorUZUN, BÜŞRA
dc.contributor.buuauthorTariq, Aiman
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentİnşaat Mühendisliği Ana Bilim Dalı
dc.contributor.orcid0000-0001-7370-2722
dc.contributor.researcheridAAJ-6390-2021
dc.contributor.researcheridKDP-3414-2024
dc.contributor.researcheridABE-6914-2020
dc.contributor.researcheridAAH-8687-2021
dc.contributor.researcheridLCS-1995-2024
dc.date.accessioned2025-10-21T09:05:35Z
dc.date.issued2025-02-27
dc.description.abstractThis study investigates the torsional vibration behavior of viscoelastic nanotubes under elastic boundary conditions using semi-analytical and machine learning (ML) approaches. Strain gradient theory is employed to account for size effects in the semi-analytical solution. Material's time-dependent behavior is represented using the Kelvin-Voigt viscoelastic model. This approach uses Fourier sine series and Stokes' transforms to establish an eigenvalue problem that allows for the calculation of vibrational frequencies under elastic conditions. In parallel, six distinct ML models including Adaptive Boosting, XGBoost, ANN, Support Vector Regression, Random Forest Regression and k-nearest Neighbors Regression, are trained on a comprehensive dataset generated using Sobol sequence sampling. A comparative analysis of all ML models is conducted by evaluating their performances using various statistical error metrics and visualization techniques. The results show that the Random Forest Regression model achieves the highest accuracy, followed by ANN and XGBoost. SHAP analysis is conducted to assess the feature importance and influence of each parameter on the predicted frequency. Its results revealed that the viscous damping parameter has the most significant impact on the predicted frequency and its lower values contribute positively to the real values of predicted frequency. SHAP results aligned closely with the analytical findings. The findings highlight the potential of ML models to accelerate the analysis of torsional vibration in nano-sized structures, offering a reliable alternative to traditional methods while maintaining high accuracy and computational efficiency.
dc.identifier.doi10.1080/15376494.2025.2471036
dc.identifier.issn1537-6494
dc.identifier.scopus2-s2.0-86000523897
dc.identifier.urihttps://doi.org/10.1080/15376494.2025.2471036
dc.identifier.urihttps://hdl.handle.net/11452/55856
dc.identifier.wos001439869400001
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherTaylor & francis inc
dc.relation.journalMechanics of advanced materials and structures
dc.subjectBuckling analysis
dc.subjectCarbon nanotubes
dc.subjectNonlocal strain
dc.subjectViscoelastic nanotubes
dc.subjectTorsional vibration
dc.subjectSobol sampling
dc.subjectMachine learning
dc.subjectSHAP analysis
dc.subjectScience & Technology
dc.subjectTechnology
dc.subjectMaterials Science, Multidisciplinary
dc.subjectMaterials Science, Characterization & Testing
dc.subjectMaterials Science, Composites
dc.subjectMaterials Science
dc.subjectMechanics
dc.titleSemi-analytical and machine learning approaches for investigating the torsional vibration behavior of nano-sized viscoelastic tubes
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/İnşaat Mühendisliği Ana Bilim Dalı
local.indexed.atWOS
local.indexed.atScopus
relation.isAuthorOfPublicationf9782842-abc1-42a9-a3c2-76a6464363be
relation.isAuthorOfPublication61c4d3a5-cfbe-45da-969f-1a074b57717e
relation.isAuthorOfPublicationb6065bca-cfbf-46a6-83bc-4d662b46f3df
relation.isAuthorOfPublication.latestForDiscoveryf9782842-abc1-42a9-a3c2-76a6464363be

Dosyalar

Orijinal seri

Şimdi gösteriliyor 1 - 1 / 1
Küçük Resim
Ad:
Tariq_vd_2025.pdf
Boyut:
3.57 MB
Format:
Adobe Portable Document Format