Publication:
EMoSOA: A new evolutionary multi-objective seagull optimization algorithm for global optimization

dc.contributor.authorDhiman, G.
dc.contributor.authorSingh, KK.
dc.contributor.authorSlowik, A.
dc.contributor.authorChang, V.
dc.contributor.authorKaur, A.
dc.contributor.authorGarg, M.
dc.contributor.buuauthorYıldız, Ali Rıza
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentMakine Mühendisliği
dc.contributor.researcheridF-7426-2011
dc.contributor.scopusid7102365439
dc.date.accessioned2022-11-29T05:47:47Z
dc.date.available2022-11-29T05:47:47Z
dc.date.issued2020-08-20
dc.description.abstractThis study introduces the evolutionary multi-objective version of seagull optimization algorithm (SOA), entitled Evolutionary Multi-objective Seagull Optimization Algorithm (EMoSOA). In this algorithm, a dynamic archive concept, grid mechanism, leader selection, and genetic operators are employed with the capability to cache the solutions from the non-dominatedPareto. The roulette-wheel method is employed to find the appropriate archived solutions. The proposed algorithm is tested and compared with state-of-the-art metaheuristic algorithms over twenty-four standard benchmark test functions. Four real-world engineering design problems are validated using proposedEMoSOAalgorithm to determine its adequacy. The findings of empirical research indicate that the proposed algorithm is better than other algorithms. It also takes into account those optimal solutions from theParetowhich shows high convergence.
dc.description.sponsorshipVC Research
dc.identifier.citationDhiman, G. vd. (2020). "EMoSOA: A new evolutionary multi-objective seagull optimization algorithm for global optimization." International Journal of Machine Learning and Cybernetics, 12(2), 571-596.
dc.identifier.endpage596
dc.identifier.issn1868-8071
dc.identifier.issue2
dc.identifier.scopus2-s2.0-85090778250
dc.identifier.startpage571
dc.identifier.urihttps://doi.org/10.1007/s13042-020-01189-1
dc.identifier.urihttps://link.springer.com/article/10.1007/s13042-020-01189-1
dc.identifier.urihttp://hdl.handle.net/11452/29610
dc.identifier.volume12
dc.identifier.wos000567736400001
dc.indexed.wosSCIE
dc.language.isoen
dc.publisherSpringer
dc.relation.collaborationYurt dışı
dc.relation.collaborationSanayi
dc.relation.journalInternational Journal of Machine Learning and Cybernetics
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectSeagull optimization algorithm
dc.subjectMulti-objective optimization
dc.subjectEvolutionary
dc.subjectPareto
dc.subjectEngineering design problems
dc.subjectConvergence
dc.subjectDiversity
dc.subjectSpotted hyena optimizer
dc.subjectComputational intelligence
dc.subjectDesign optimization
dc.subjectPlacement
dc.subjectModel
dc.subjectCost
dc.subjectBenchmarking
dc.subjectGlobal optimization
dc.subjectMultiobjective optimization
dc.subjectEmpirical research
dc.subjectEngineering design problems
dc.subjectEvolutionary multi-objectives
dc.subjectGenetic operators
dc.subjectMeta heuristic algorithm
dc.subjectOptimal solutions
dc.subjectOptimization algorithms
dc.subjectState of the art
dc.subjectComputer science
dc.subject.scopusDecomposition; Evolutionary Multiobjective Optimization; Pareto Front
dc.subject.wosComputer science, artificial intelligence
dc.titleEMoSOA: A new evolutionary multi-objective seagull optimization algorithm for global optimization
dc.typeArticle
dc.wos.quartileQ2
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/Makine Mühendisliği
local.indexed.atScopus
local.indexed.atWOS

Files

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: