Yayın: Data-driven QSPR analysis of anti-cancer drugs using python-based topological techniques
| dc.contributor.author | Kara, Şen Yeliz | |
| dc.contributor.author | Sağlam Özkan Yeşim | |
| dc.contributor.author | Bektaş, Ali Berkan | |
| dc.contributor.buuauthor | KARA ŞEN, YELİZ | |
| dc.contributor.buuauthor | SAĞLAM ÖZKAN, YEŞİM | |
| dc.contributor.buuauthor | Bektaş, Ali Berkan | |
| dc.contributor.department | Fen-Edebiyat Fakültesi | |
| dc.contributor.department | Matematik Ana Bilim Dalı | |
| dc.contributor.orcid | 0000-0002-8001-6082 | |
| dc.contributor.scopusid | 57190752833 | |
| dc.contributor.scopusid | 57193338830 | |
| dc.contributor.scopusid | 60046904200 | |
| dc.date.accessioned | 2025-11-28T08:10:26Z | |
| dc.date.issued | 2025-10-01 | |
| dc.description.abstract | This study proposes a machine learning-based Quantitative Structure–Property Relationship (QSPR) model for predicting the physicochemical properties of anti-cancer drugs by utilizing topological descriptors. The development of anti-cancer drugs poses a significant challenge due to the intricate relationship between drug efficacy and chemical structure. The present study utilizes machine learning regression models in combination with leave-one-out cross-validation (LOOCV) to predict a range of physicochemical properties, including boiling point, enthalpy, molar refractivity, complexity, molecular weight, heavy atom count, flash point, and polarizability. The models are developed using data from thirty anti-cancer drugs and assessed using performance metrics such as the correlation coefficient (R), the coefficient of determination (R2) and root mean square error (RMSE). The findings are encouraging, with a thorough comparison made between the observed values and the values predicted by the QSPR models. | |
| dc.identifier.doi | 10.1016/j.jics.2025.101993 | |
| dc.identifier.issn | 0019-4522 | |
| dc.identifier.issue | 10 | |
| dc.identifier.scopus | 2-s2.0-105013258493 | |
| dc.identifier.uri | https://hdl.handle.net/11452/56937 | |
| dc.identifier.volume | 102 | |
| dc.indexed.scopus | Scopus | |
| dc.language.iso | en | |
| dc.publisher | Elsevier | |
| dc.relation.journal | Journal of the Indian Chemical Society | |
| dc.rights | info:eu-repo/semantics/openAccess | |
| dc.subject | Topological indices | |
| dc.subject | QSPR models | |
| dc.subject | Python algorithm | |
| dc.subject | Chemical and physical properties | |
| dc.subject | Anti-cancer drugs | |
| dc.title | Data-driven QSPR analysis of anti-cancer drugs using python-based topological techniques | |
| dc.type | Article | |
| dspace.entity.type | Publication | |
| local.contributor.department | Fen-Edebiyat Fakültesi/Matematik Ana Bilim Dalı | |
| local.indexed.at | Scopus | |
| relation.isAuthorOfPublication | cefc08b2-e6fe-4b0b-846e-f8d1b36b7066 | |
| relation.isAuthorOfPublication | ed405fea-693b-4feb-afc7-0414e6f6891c | |
| relation.isAuthorOfPublication.latestForDiscovery | cefc08b2-e6fe-4b0b-846e-f8d1b36b7066 |
Dosyalar
Orijinal seri
1 - 1 / 1
