Yayın:
Data-driven QSPR analysis of anti-cancer drugs using python-based topological techniques

dc.contributor.authorKara, Şen Yeliz
dc.contributor.authorSağlam Özkan Yeşim
dc.contributor.authorBektaş, Ali Berkan
dc.contributor.buuauthorKARA ŞEN, YELİZ
dc.contributor.buuauthorSAĞLAM ÖZKAN, YEŞİM
dc.contributor.buuauthorBektaş, Ali Berkan
dc.contributor.departmentFen-Edebiyat Fakültesi
dc.contributor.departmentMatematik Ana Bilim Dalı
dc.contributor.orcid0000-0002-8001-6082
dc.contributor.scopusid 57190752833
dc.contributor.scopusid57193338830
dc.contributor.scopusid60046904200
dc.date.accessioned2025-11-28T08:10:26Z
dc.date.issued2025-10-01
dc.description.abstractThis study proposes a machine learning-based Quantitative Structure–Property Relationship (QSPR) model for predicting the physicochemical properties of anti-cancer drugs by utilizing topological descriptors. The development of anti-cancer drugs poses a significant challenge due to the intricate relationship between drug efficacy and chemical structure. The present study utilizes machine learning regression models in combination with leave-one-out cross-validation (LOOCV) to predict a range of physicochemical properties, including boiling point, enthalpy, molar refractivity, complexity, molecular weight, heavy atom count, flash point, and polarizability. The models are developed using data from thirty anti-cancer drugs and assessed using performance metrics such as the correlation coefficient (R), the coefficient of determination (R2) and root mean square error (RMSE). The findings are encouraging, with a thorough comparison made between the observed values and the values predicted by the QSPR models.
dc.identifier.doi10.1016/j.jics.2025.101993
dc.identifier.issn0019-4522
dc.identifier.issue10
dc.identifier.scopus2-s2.0-105013258493
dc.identifier.urihttps://hdl.handle.net/11452/56937
dc.identifier.volume102
dc.indexed.scopusScopus
dc.language.isoen
dc.publisherElsevier
dc.relation.journalJournal of the Indian Chemical Society
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectTopological indices
dc.subjectQSPR models
dc.subjectPython algorithm
dc.subjectChemical and physical properties
dc.subjectAnti-cancer drugs
dc.titleData-driven QSPR analysis of anti-cancer drugs using python-based topological techniques
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentFen-Edebiyat Fakültesi/Matematik Ana Bilim Dalı
local.indexed.atScopus
relation.isAuthorOfPublicationcefc08b2-e6fe-4b0b-846e-f8d1b36b7066
relation.isAuthorOfPublicationed405fea-693b-4feb-afc7-0414e6f6891c
relation.isAuthorOfPublication.latestForDiscoverycefc08b2-e6fe-4b0b-846e-f8d1b36b7066

Dosyalar

Orijinal seri

Şimdi gösteriliyor 1 - 1 / 1
Küçük Resim
Ad:
Kara_vd_2025.pdf
Boyut:
5.16 MB
Format:
Adobe Portable Document Format