Yayın:
Hybrid adaptive ant lion optimization with traditional controllers for driving and controlling switched reluctance motors to enhance performance

dc.contributor.authorJabari, Mostafa
dc.contributor.authorEkinci, Serdar
dc.contributor.authorBajaj, Mohit
dc.contributor.authorBlazek, Vojtech
dc.contributor.authorProkop, Lukas
dc.contributor.buuauthorİzci, Davut
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentElektrik ve Elektronik Mühendisliği Ana Bilim Dalı
dc.contributor.orcid0000-0001-8359-0875
dc.contributor.researcheridT-6000-2019
dc.date.accessioned2025-10-21T10:00:59Z
dc.date.issued2025-04-15
dc.description.abstractSwitched reluctance motors (SRMs) are favored in industrial applications for their durability, efficiency, and cost-effectiveness, yet face challenges such as torque ripple and nonlinear magnetic behavior that limit their precision in control tasks. To address these issues, this work introduces a novel hybrid adaptive ant lion optimization (HAALO) algorithm, combined with PI and FOPID controllers, to improve SRM performance. The HAALO algorithm enhances traditional ant lion optimization by integrating adaptive mutation and elite preservation techniques for dynamic real-time control, optimizing both torque ripple and speed regulation. Simulation results demonstrate the superiority of the HAALO-optimized controllers over conventional methods, showing faster convergence and enhanced control accuracy. This study provides a new hybrid optimization method that significantly advances SRM control, offering efficient solutions for high-performance applications.
dc.description.sponsorshipEuropean Union (EU) CZ.10.03.01/00/22_003/0000048
dc.description.sponsorshipEuropean Union under the REFRESH-Research Excellence For Region Sustainability and High-Tech Industries Project via the Operational Programme Just Transition
dc.description.sponsorshipNational Centre for Energy II TN02000025
dc.description.sponsorshipResearch and Innovation Action to Support the Implementation of the Climate Neutral and Smart Cities Mission Project 101139527
dc.description.sponsorshipExPEDite through European Union
dc.identifier.doi10.1038/s41598-025-97070-8
dc.identifier.issn2045-2322
dc.identifier.issue1
dc.identifier.scopus2-s2.0-105003182043
dc.identifier.urihttps://doi.org/10.1038/s41598-025-97070-8
dc.identifier.urihttps://hdl.handle.net/11452/56306
dc.identifier.volume15
dc.identifier.wos001468488100015
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherNature portfolio
dc.relation.journalScientific reports
dc.subjectSwitched reluctance motors
dc.subjectHybrid adaptive optimization
dc.subjectHAALO algorithm
dc.subjectPI controller
dc.subjectFOPID controller
dc.subjectTorque ripple minimization
dc.subjectScience & Technology
dc.subjectMultidisciplinary Sciences
dc.subjectScience & Technology - Other Topics
dc.titleHybrid adaptive ant lion optimization with traditional controllers for driving and controlling switched reluctance motors to enhance performance
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/Elektrik ve Elektronik Mühendisliği Ana Bilim Dalı
local.indexed.atWOS
local.indexed.atScopus

Dosyalar

Orijinal seri

Şimdi gösteriliyor 1 - 1 / 1
Küçük Resim
Ad:
Izci_vd_2025.pdf
Boyut:
18.82 MB
Format:
Adobe Portable Document Format