Publication:
On the thermo-mechanical vibration of an embedded short-fiber-reinforced nanobeam

dc.contributor.buuauthorAkpinar, Murat
dc.contributor.buuauthorAKPINAR, MURAT
dc.contributor.buuauthorYAYLI, MUSTAFA ÖZGÜR
dc.contributor.buuauthorUzun, Büşra
dc.contributor.buuauthorUZUN, BÜŞRA
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentİnşaat Mühendisliği Ana Bilim Dalı.
dc.contributor.orcid0009-0002-1683-1987
dc.contributor.orcid0000-0002-7636-7170
dc.contributor.orcid0000-0003-2231-170X
dc.contributor.researcheridKEH-1136-2024
dc.contributor.researcheridABE-6914-2020
dc.contributor.researcheridAAJ-6390-2021
dc.date.accessioned2025-01-23T10:34:27Z
dc.date.available2025-01-23T10:34:27Z
dc.date.issued2024-09-01
dc.description.abstractThis work investigates the thermo-mechanical vibration frequencies of an embedded composite nano-beam restrained with elastic springs at both ends. Composite nanobeam consists of a matrix and short fibers as reinforcement elements placed inside the matrix. An approach based on Fourier sine series and Stokes' transform is adopted to present a general solution that can examine the elastic boundary conditions of the short-fiber-reinforced nanobeam considered with the Halpin-Tsai model. In addition to the elastic medium effect considered by the Winkler model, the size effect is also considered on the basis of non- local strain gradient theory. After creating an eigenvalue problem that includes all the mentioned parameters, this problem is solved to examine the effects of fiber and matrix properties, size parameters, Winkler stiffness and temperature change. The numerical results obtained at the end of the study show that increasing the rigidity of the Winkler foundation, the ratio of fiber length to diameter and the ratio of fiber Young's modulus to matrix Young's modulus increase the frequencies. However, thermal loads acting in the positive direction and an increase in the ratio of fiber mass density to matrix mass density lead to a decrease in frequencies. In this study, it is clear from the eigenvalue solution calculating the frequencies of thermally loaded embbeded short-fiber-reinforced nanobeams that changing the stiffness of the deformable springs provides frequency control while keeping the other properties of the nanobeam constant.
dc.identifier.doi10.12989/anr.2024.17.3.197
dc.identifier.endpage211
dc.identifier.issn2287-237X
dc.identifier.issue3
dc.identifier.startpage197
dc.identifier.urihttps://doi.org/10.12989/anr.2024.17.3.197
dc.identifier.urihttps://hdl.handle.net/11452/49728
dc.identifier.volume17
dc.identifier.wos001326942100001
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherTechno-press
dc.relation.journalAdvances In Nano Research
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectThermal vibration
dc.subjectBeams
dc.subjectComposites
dc.subjectBehavior
dc.subjectProperties elastic boundaries
dc.subjectNon-local strain gradient theory
dc.subjectShort-fiber-reinforced nanobeam
dc.subjectThermo-mechanical vibration
dc.subjectWinkler foundation
dc.subjectScience & technology
dc.subjectTechnology
dc.subjectNanoscience & nanotechnology
dc.subjectMaterials science, multidisciplinary
dc.subjectScience & technology - other topics
dc.subjectMaterials science
dc.titleOn the thermo-mechanical vibration of an embedded short-fiber-reinforced nanobeam
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/İnşaat Mühendisliği Ana Bilim Dalı.
local.indexed.atWOS
relation.isAuthorOfPublicationdb952b13-125c-47b9-a3cf-e611b79dc97c
relation.isAuthorOfPublicationf9782842-abc1-42a9-a3c2-76a6464363be
relation.isAuthorOfPublicationb6065bca-cfbf-46a6-83bc-4d662b46f3df
relation.isAuthorOfPublication.latestForDiscoverydb952b13-125c-47b9-a3cf-e611b79dc97c

Files