Publication:
Structural design optimization of the arc spring and dual-mass flywheel integrated with different optimization methods

dc.contributor.buuauthorYıldız, Ahmet
dc.contributor.buuauthorYILDIZ, AHMET
dc.contributor.buuauthorYılmaz, Önder
dc.contributor.buuauthorKarabulut, Hüseyin
dc.contributor.departmentBursa Uludağ Üniversitesi/Mühendislik Fakültesi/Otomotiv Mühendisliği Bölümü.
dc.contributor.departmentBursa Uludağ Üniversitesi/Mühendislik Fakültesi/Makina Mühendisliği Bölümü.
dc.contributor.orcid0000-0001-5434-4368
dc.contributor.orcid0000-0002-2806-4781
dc.contributor.orcid0000-0001-5625-7292
dc.contributor.researcheridT-8076-2018
dc.contributor.researcheridHSF-3939-2023
dc.contributor.researcheridKHZ-8294-2024
dc.date.accessioned2024-09-25T06:14:08Z
dc.date.available2024-09-25T06:14:08Z
dc.date.issued2022-02-23
dc.description.abstractThis paper is about the structural design optimization of the torsional arc spring and the dual-mass flywheel (DMF) using three different population-based optimization techniques: Particle swarm optimization (PSO), differential evolution (DE), and genetic algorithm (GA). For this purpose, the equations of the motions of the vehicle powertrain are derived and implemented into the dynamic analysis to minimize the vehicle torsional vibrations. The parameters and initial angles of the arc spring are optimized by considering the objective function that is the sum of the maximum acceleration amplitudes of the crankshaft vibrations. The results demonstrated that the proposed design procedure is able to provide a proper arc spring and DMF inertias to reduce the torsional vibration significantly. Moreover, it is indicated that the DE optimization techniques provide best performances than others. Finally, it is also shown that the natural frequencies can be reduced by the DMF and the optimization results are under the idling critical speed of the engine. The obtained results of this paper are of utmost importance for the arc spring manufacturer about the design process considering both DMF and spring parameters simultaneously to minimize torsional vibration of the vehicle powertrain.
dc.identifier.doi10.1515/mt-2021-2050
dc.identifier.endpage248
dc.identifier.issn0025-5300
dc.identifier.issue2
dc.identifier.startpage240
dc.identifier.urihttps://doi.org/10.1515/mt-2021-2050
dc.identifier.urihttps://hdl.handle.net/11452/45186
dc.identifier.volume64
dc.identifier.wos000766126000009
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherWalter De Gruyter Gmbh
dc.relation.journalMaterials Testing
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.relation.tubitak3190332
dc.subjectVibration
dc.subjectDamper
dc.subjectArc spring
dc.subjectDual-mass flywheel (dmf)
dc.subjectResonance frequency
dc.subjectStructural design optimization
dc.subjectVehicle torsional vibrations
dc.subjectScience & technology
dc.subjectTechnology
dc.subjectMaterials science, characterization & testing
dc.subjectMaterials science
dc.titleStructural design optimization of the arc spring and dual-mass flywheel integrated with different optimization methods
dc.typeArticle
dspace.entity.typePublication
relation.isAuthorOfPublicationdc2d95ee-2a80-48cf-b888-7c9a7b9fcd00
relation.isAuthorOfPublication.latestForDiscoverydc2d95ee-2a80-48cf-b888-7c9a7b9fcd00

Files

Collections