Yayın:
Enhanced three-stage cluster-then-classify method (ETSCCM)

dc.contributor.authorEroğlu, Duygu Yılmaz
dc.contributor.authorGüleryüz, Elif
dc.contributor.buuauthorYILMAZ EROĞLU, DUYGU
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentEndüstri Mühendisliği Bölümü
dc.contributor.researcheridAAH-1079-2021
dc.date.accessioned2025-10-21T09:15:35Z
dc.date.issued2025-03-14
dc.description.abstractModern steel manufacturing processes demand rigorous quality control to rapidly and accurately detect and classify defects in steel plates. In this work, we propose an enhanced three-stage cluster-then-classify method (ETSCCM) that merges clustering-based data partitioning with strategic feature subset selection and refined hyperparameter tuning. Initially, the appropriate number of clusters is determined by combining K-means with hierarchical clustering, ensuring a more precise segmentation of the Steel Plates Fault dataset. Concurrently, various correlated feature subsets are assessed to identify those that maximize classification performance. The best-performing scenario is then used in conjunction with the most effective classifier, identified through comparative analyses involving widely adopted algorithms. Experimental outcomes on real-world fault data, as well as additional publicly available datasets, indicate that our approach can achieve a significant increase in prediction accuracy compared to conventional methods. This study introduces a new method by jointly refining cluster assignments and classification parameters through scenario-based feature subsets, going beyond single-stage methods in enhancing detection accuracy. Through this multi-stage process, pivotal data relationships are uncovered, resulting in a robust, adaptable framework that advances industrial fault diagnosis.
dc.identifier.doi10.3390/met15030318
dc.identifier.issue3
dc.identifier.scopus2-s2.0-105001159543
dc.identifier.urihttps://doi.org/10.3390/met15030318
dc.identifier.urihttps://hdl.handle.net/11452/55932
dc.identifier.volume15
dc.identifier.wos001452620200001
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherMdpi
dc.relation.journalMetals
dc.subjectAlgorithms
dc.subjectSelection
dc.subjectClustering
dc.subjectClassification
dc.subjectSteel plates faults
dc.subjectFeature selection
dc.subjectScience & technology
dc.subjectTechnology
dc.subjectMaterials science, multidisciplinary
dc.subjectMetallurgy & metallurgical engineering
dc.subjectMaterials science
dc.titleEnhanced three-stage cluster-then-classify method (ETSCCM)
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/Endüstri Mühendisliği Bölümü
local.indexed.atWOS
local.indexed.atScopus
relation.isAuthorOfPublication7ccd919b-19d3-4812-b2e3-ee4b29f1411b
relation.isAuthorOfPublication.latestForDiscovery7ccd919b-19d3-4812-b2e3-ee4b29f1411b

Dosyalar

Orijinal seri

Şimdi gösteriliyor 1 - 1 / 1
Küçük Resim
Ad:
Eroğlu_Güleryüz_2025.pdf
Boyut:
2.15 MB
Format:
Adobe Portable Document Format