Publication:
Applications of two kinds of kudryashov methods for time fractional (2+1) dimensional chaffee-infante equation and its stability analysis

dc.contributor.authorTetik, Duygu
dc.contributor.authorAkbulut, Arzu
dc.contributor.authorÇelik, Nisa
dc.contributor.buuauthorTetik, Duygu
dc.contributor.buuauthorAKBULUT, ARZU
dc.contributor.buuauthorÇELİK, NİSA
dc.contributor.departmentFen ve Edebiyat Fakültesi
dc.contributor.departmentMatematik Bölümü
dc.contributor.orcid0000-0003-2448-2481
dc.contributor.researcheridF-5393-2015
dc.contributor.researcheridLVQ-8966-2024
dc.contributor.researcheridITG-3498-2023
dc.date.accessioned2025-01-29T13:00:00Z
dc.date.available2025-01-29T13:00:00Z
dc.date.issued2024-02-05
dc.description.abstractIn this study, the beta time fractional (2 + 1) dimensional Chaffee-Infante equation used to describe the behavior of gas diffusion in a homogeneous medium is discussed. Generalized Kudryashov and modified Kudryashov procedures were used to discovered solitons of the equation. These methods can be easily applied and offer different solutions checked to other methods in the literature. At the same time, these two methods use symbolic calculations to better understand various nonlinear wave models and offer a powerful and effective mathematical approach. The solutions created in this article are different from those in the literature and will guide those working in the field of physics and engineering to better understand this model. Figures of the results were made values different from each other. The stability of the equations in applications has been demonstrated by testing the stability feature on some solutions obtained using the features of the Hamilton system. This work demonstrates the power and effectiveness of the methods discussed in applying many different forms of fractional-order nonlinear equations. The results obtained in this paper are original to our research and have the potential to be helpful in the fields of mathematical engineering and physics.
dc.identifier.doi10.1007/s11082-023-06271-w
dc.identifier.eissn1572-817X
dc.identifier.issn0306-8919
dc.identifier.issue4
dc.identifier.scopus2-s2.0-85187195006
dc.identifier.urihttps://doi.org/10.1007/s11082-023-06271-w
dc.identifier.urihttps://link.springer.com/article/10.1007/s11082-023-06271-w
dc.identifier.urihttps://hdl.handle.net/11452/49918
dc.identifier.volume56
dc.identifier.wos001157748900001
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherSpringer
dc.relation.bapBAP
dc.relation.journalOptical and Quantum Electronics
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectSine-cosine method
dc.subjectSoliton-solutions
dc.subjectSolitons
dc.subjectWave transformations
dc.subjectKudryashov methods
dc.subjectChaffee-infante equation
dc.subjectBeta-derivatives
dc.subjectScience & technology
dc.subjectTechnology
dc.subjectPhysical sciences
dc.subjectEngineering, electrical & electronic
dc.subjectQuantum science & technology
dc.subjectOptics
dc.subjectEngineering
dc.subjectPhysics
dc.titleApplications of two kinds of kudryashov methods for time fractional (2+1) dimensional chaffee-infante equation and its stability analysis
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentFen ve Edebiyat Fakültesi/Matematik Bölümü
local.indexed.atWOS
local.indexed.atScopus
relation.isAuthorOfPublication7521007d-206c-4097-9cd1-88824a1991cb
relation.isAuthorOfPublicationaf0a384c-f14d-4920-80dd-49fa9a567259
relation.isAuthorOfPublication.latestForDiscovery7521007d-206c-4097-9cd1-88824a1991cb

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Tetik_vd_2024.pdf
Size:
1.65 MB
Format:
Adobe Portable Document Format