Publication:
Detection and analysis of driver fatigue stages with eeg signals

dc.contributor.authorEken, Recep
dc.contributor.buuauthorYılmaz, Güneş
dc.contributor.buuauthorYILMAZ, GÜNEŞ
dc.contributor.buuauthorDemir, Ahmet
dc.contributor.buuauthorDEMİR, AHMET
dc.contributor.buuauthorBekiryazıcı, Şule
dc.contributor.buuauthorBEKİRYAZICI, ŞULE
dc.contributor.buuauthorCoşkun, Oğuzhan
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentElektrik ve Elektronik Mühendisliği Bölümü
dc.contributor.orcid0000-0003-1115-186X
dc.contributor.orcid0000-0001-8972-1952
dc.contributor.researcheridGZM-6710-2022
dc.contributor.researcheridAAH-4177-2021
dc.contributor.researcheridAAH-4182-2021
dc.date.accessioned2024-09-25T12:24:24Z
dc.date.available2024-09-25T12:24:24Z
dc.date.issued2022-01-01
dc.description.abstractToday, many people die in traffic accidents. Sleeplessness and fatigue of drivers are shown as the most important cause of traffic accidents. For this reason, research on driver performance analysis is of great importance. In this study, a system is designed to analyze driver fatigue using electroencephalography (EEG) data. As the data set, the EEG signals from sustained-attention driving task prepared by National Chiao Tung University have been used. The data set is divided into four classes to determine the driver's fatigue times and level. In order to determine the frequency ranges that occur during driver fatigue phases, EEG signals are filtered. Principal Component Analysis method has been used to reduce the size of the features matrix. With the Divide and Conquer algorithm, all combinations in which the four classes will be separated best are determined and classification has been done at each step using sub-classifiers. As sub-classifiers, k-Nearest Neighborhood, Support Vector Machines and Linear Discrimination Analysis algorithms are used. As a result of the study, the average classification successes are 87.9% for the k-Nearest Neighborhood algorithm, 88.5% for the Support Vector Machines algorithm and 81.6% for Linear Discrimination Analysis. The highest classification success has been achieved as 93.2% with the Support Vector Machines classifier, between 67.5-90 min. of driving at the 4th grade fatigue level.
dc.identifier.doi10.5505/pajes.2022.89327
dc.identifier.endpage651
dc.identifier.issn1300-7009
dc.identifier.issue5
dc.identifier.startpage643
dc.identifier.urihttps://doi.org/10.5505/pajes.2022.89327
dc.identifier.urihttps://hdl.handle.net/11452/45248
dc.identifier.volume28
dc.identifier.wos000875336200002
dc.indexed.wosWOS.ESCI
dc.language.isoen
dc.publisherPamukkale Univ
dc.relation.journalPamukkale University Journal Of Engineering Sciences-pamukkale Universitesi Muhendislik Bilimleri Dergisi
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectDrowsiness
dc.subjectClassification
dc.subjectDriver fatigue
dc.subjectElectroencephalography
dc.subjectPrincipal component analysis
dc.subjectClassification
dc.subjectDivide and conquer algorithm
dc.subjectScience & technology
dc.subjectTechnology
dc.subjectEngineering, multidisciplinary
dc.subjectEngineering
dc.titleDetection and analysis of driver fatigue stages with eeg signals
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/Elektrik ve Elektronik Mühendisliği Bölümü
relation.isAuthorOfPublication2173181b-0d25-4d1a-a1de-db0b2604005d
relation.isAuthorOfPublication150c4af7-bfb0-4ca1-b90d-1b2a599bbf10
relation.isAuthorOfPublication70e6a885-bf09-46ed-80a2-a21f17b94e40
relation.isAuthorOfPublication.latestForDiscovery2173181b-0d25-4d1a-a1de-db0b2604005d

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Demir_vd_2022.pdf
Size:
915.47 KB
Format:
Adobe Portable Document Format

Collections