Publication: Optimizing acoustic features for source cell-phone recognition using speech signals
dc.contributor.author | Hanilçi C. | |
dc.contributor.author | Ertaş F. | |
dc.contributor.buuauthor | ERTAŞ, FİGEN | |
dc.contributor.buuauthor | Hanilçi, Cemal | |
dc.contributor.department | Mühendislik Fakültesi | |
dc.contributor.department | Elektrik ve Elektronik Ana Bilim Dalı | |
dc.contributor.scopusid | 35781455400 | |
dc.contributor.scopusid | 24724154500 | |
dc.date.accessioned | 2025-05-13T10:12:18Z | |
dc.date.issued | 2013-07-17 | |
dc.description.abstract | This paper presents comparison and optimization of acoustic features for source cell-phone recognition using recorded speech signals. Different acoustic feature extraction methods such as Mel-frequency, linear frequency and Bark frequency cepstral coefficients (MFCC, LFCC and BFCC) and linear prediction cepstral coefficients (LPCC) are considered. In addition to different feature sets, the effect of dynamic features, delta and double-delta coefficients (Δ and Δ2), and feature normalizations, cepstral mean normalization (CMN), cepstral variance normalization (CVN) and cepstral mean and variance normalization (CMVN) are also examined on the performance of source cell-phone recognition. The same support vector machine (SVM) classifier with fixed parameters and the same cell-phone dataset are used in the experiments in order to make a fair comparison of different features and feature normalization techniques. © 2013 ACM. | |
dc.description.sponsorship | ACM SIGMM | |
dc.identifier.doi | 10.1145/2482513.2482520 | |
dc.identifier.endpage | 148 | |
dc.identifier.scopus | 2-s2.0-84880079747 | |
dc.identifier.startpage | 141 | |
dc.identifier.uri | https://hdl.handle.net/11452/52513 | |
dc.indexed.scopus | Scopus | |
dc.language.iso | en | |
dc.relation.journal | IH and MMSec 2013 - Proceedings of the 2013 ACM Information Hiding and Multimedia Security Workshop | |
dc.rights | info:eu-repo/semantics/closedAccess | |
dc.subject | Source cell-phone recognition | |
dc.subject | Feature normalization | |
dc.subject | Audio forensics | |
dc.subject | Acoustic features | |
dc.subject.scopus | Convolutional Neural Network; Support Vector Machine; Audio Recording | |
dc.title | Optimizing acoustic features for source cell-phone recognition using speech signals | |
dc.type | Conference Paper | |
dspace.entity.type | Publication | |
local.contributor.department | Mühendislik Fakültesi/ Elektrik ve Elektronik Ana Bilim Dalı | |
relation.isAuthorOfPublication | 8ca05884-91a0-487e-9f6d-ec886864b4a4 | |
relation.isAuthorOfPublication.latestForDiscovery | 8ca05884-91a0-487e-9f6d-ec886864b4a4 |