Publication:
Optimizing acoustic features for source cell-phone recognition using speech signals

dc.contributor.authorHanilçi C.
dc.contributor.authorErtaş F.
dc.contributor.buuauthorERTAŞ, FİGEN
dc.contributor.buuauthorHanilçi, Cemal
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentElektrik ve Elektronik Ana Bilim Dalı
dc.contributor.scopusid35781455400
dc.contributor.scopusid24724154500
dc.date.accessioned2025-05-13T10:12:18Z
dc.date.issued2013-07-17
dc.description.abstractThis paper presents comparison and optimization of acoustic features for source cell-phone recognition using recorded speech signals. Different acoustic feature extraction methods such as Mel-frequency, linear frequency and Bark frequency cepstral coefficients (MFCC, LFCC and BFCC) and linear prediction cepstral coefficients (LPCC) are considered. In addition to different feature sets, the effect of dynamic features, delta and double-delta coefficients (Δ and Δ2), and feature normalizations, cepstral mean normalization (CMN), cepstral variance normalization (CVN) and cepstral mean and variance normalization (CMVN) are also examined on the performance of source cell-phone recognition. The same support vector machine (SVM) classifier with fixed parameters and the same cell-phone dataset are used in the experiments in order to make a fair comparison of different features and feature normalization techniques. © 2013 ACM.
dc.description.sponsorshipACM SIGMM
dc.identifier.doi10.1145/2482513.2482520
dc.identifier.endpage 148
dc.identifier.scopus2-s2.0-84880079747
dc.identifier.startpage141
dc.identifier.urihttps://hdl.handle.net/11452/52513
dc.indexed.scopusScopus
dc.language.isoen
dc.relation.journalIH and MMSec 2013 - Proceedings of the 2013 ACM Information Hiding and Multimedia Security Workshop
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectSource cell-phone recognition
dc.subjectFeature normalization
dc.subjectAudio forensics
dc.subjectAcoustic features
dc.subject.scopusConvolutional Neural Network; Support Vector Machine; Audio Recording
dc.titleOptimizing acoustic features for source cell-phone recognition using speech signals
dc.typeConference Paper
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/ Elektrik ve Elektronik Ana Bilim Dalı
relation.isAuthorOfPublication8ca05884-91a0-487e-9f6d-ec886864b4a4
relation.isAuthorOfPublication.latestForDiscovery8ca05884-91a0-487e-9f6d-ec886864b4a4

Files

Collections