Yayın:
An AI-based nutrition recommendation system: Technical validation with insights from Mediterranean cuisine

dc.contributor.authorKalpakoglou, Kyriakos
dc.contributor.authorCalderon-Perez, Lorena
dc.contributor.authorBoque, Noemi
dc.contributor.authorGymnopoulos, Lazaros P.
dc.contributor.authorDimitropoulos, Kosmas
dc.contributor.buuauthorGÜLDAŞ, METİN
dc.contributor.buuauthorErdoğan Demir, Cağla
dc.contributor.departmentSağlık Bilimleri Fakültesi
dc.contributor.departmentBeslenme ve Diyetetik Ana Bilim Dalı
dc.contributor.researcheridU-1332-2019
dc.contributor.researcheridLVW-7767-2024
dc.date.accessioned2025-10-21T09:25:47Z
dc.date.issued2025-08-14
dc.description.abstractIntroduction Modern lifestyle trends such as sedentary behaviors and unhealthy diets pose a major health challenge, as they have been related to multiple pathologies. Following a healthy diet has become increasingly difficult in today's fast-paced world. Given this context, artificial intelligence can play a pivotal role in addressing the challenge.Methods We present an AI-based nutrition recommendation system that generates balanced, personalized weekly meal plans tailored to the nutritional needs and preferences of healthy adults. The proposed method retrieves dishes and meals from an expert-validated database featuring Mediterranean foods, following a structured four-step process to recommend a weekly Nutrition Plan (NP).Results The system's performance is evaluated across 4,000 generated user profiles in three key areas: (a) dish/meal filtering accuracy based on user-specific parameters (e.g., allergies), (b) diversity of meals and food group balance, and (c) accuracy in caloric and macronutrient recommendations. The system achieves high accuracy in terms of suggested caloric and nutrient content while ensuring seasonality, diversity, and food group variety.Discussion With solid accuracy in filtering, diversity, and caloric/macronutrient suggestions, the proposed system offers a promising solution to modern dietary challenges.
dc.description.sponsorshipEuropean Union (EU)
dc.description.sponsorshipPRIMA program 2133
dc.description.sponsorshipPRIMA program 2133
dc.description.sponsorshipEuropean Union (EU)
dc.identifier.doi10.3389/fnut.2025.1546107
dc.identifier.issn2296-861X
dc.identifier.scopus2-s2.0-105014291990
dc.identifier.urihttps://doi.org/10.3389/fnut.2025.1546107
dc.identifier.urihttps://hdl.handle.net/11452/56018
dc.identifier.volume12
dc.identifier.wos001563144800001
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherFrontiers media sa
dc.relation.journalFrontiers in nutrition
dc.subjectOptımızatıon
dc.subjectObesıty
dc.subjectDısease
dc.subjectEnergy
dc.subjectArtificial intelligence
dc.subjectAI-based recommender
dc.subjectPersonalized recommendations
dc.subjectNutritional recommendations
dc.subjectMeal plan recommendations
dc.subjectHealthy diet
dc.subjectMediterranean cuisine
dc.subjectScience & Technology
dc.subjectLife Sciences & Biomedicine
dc.subjectNutrition & Dietetics
dc.titleAn AI-based nutrition recommendation system: Technical validation with insights from Mediterranean cuisine
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentSağlık Bilimleri Fakültesi/Beslenme ve Diyetetik Ana Bilim Dalı
local.indexed.atWOS
local.indexed.atScopus
relation.isAuthorOfPublication8fc8a042-7722-4e11-9469-9896778d7ea3
relation.isAuthorOfPublication.latestForDiscovery8fc8a042-7722-4e11-9469-9896778d7ea3

Dosyalar

Orijinal seri

Şimdi gösteriliyor 1 - 1 / 1
Küçük Resim
Ad:
Erdogan_vd_2025.pdf
Boyut:
1.28 MB
Format:
Adobe Portable Document Format