Publication:
Enhancing the performance of a additive manufactured battery holder using a coupled artificial neural network with a hybrid flood algorithm and water wave algorithm

dc.contributor.authorYıldız, Betül Sultan
dc.contributor.buuauthorYILDIZ, BETÜL SULTAN
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentMakine Mühendisliği Bölümü
dc.contributor.researcheridAAH-6495-2019
dc.date.accessioned2025-01-17T11:23:21Z
dc.date.available2025-01-17T11:23:21Z
dc.date.issued2024-08-09
dc.description.abstractThis research is the first attempt in the literature to combine design for additive manufacturing and hybrid flood algorithms for the optimal design of battery holders of an electric vehicle. This article uses a recent metaheuristic to explore the optimization of a battery holder for an electric vehicle. A polylactic acid (PLA) material is preferred during the design of the holder for additive manufacturing. Specifically, both a hybrid flood algorithm (FLA-SA) and a water wave optimizer (WWO) are utilized to generate an optimal design for the holder. The flood algorithm is hybridized with a simulated annealing algorithm. An artificial neural network is employed to acquire a meta-model, enhancing optimization efficiency. The results underscore the robustness of the hybrid flood algorithm in achieving optimal designs for electric car components, suggesting its potential applicability in various product development processes.
dc.identifier.doi10.1515/mt-2024-0217
dc.identifier.eissn2195-8572
dc.identifier.issn0025-5300
dc.identifier.urihttps://doi.org/10.1515/mt-2024-0217
dc.identifier.urihttps://www.degruyter.com/document/doi/10.1515/mt-2024-0217/html
dc.identifier.urihttps://hdl.handle.net/11452/49556
dc.identifier.wos001286361300001
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherWalter de Gruyter Gmbh
dc.relation.journalMaterials Testing
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectMarine predators algorithm
dc.subjectSalp swarm algorithm
dc.subjectOptimization algorithm
dc.subjectDesign optimization
dc.subjectElectric vehicle
dc.subjectPla
dc.subjectAdditive manufacturing
dc.subjectFlood algorithm
dc.subjectBattery holder
dc.subjectShape design optimization
dc.subjectSimulated annealing algorithm
dc.subjectArtificial neural network
dc.subjectScience & technology
dc.subjectTechnology
dc.subjectMaterials science, characterization & testing
dc.subjectMaterials science
dc.titleEnhancing the performance of a additive manufactured battery holder using a coupled artificial neural network with a hybrid flood algorithm and water wave algorithm
dc.typeArticle
dc.typeEarly Access
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/Makine Mühendisliği Bölümü
local.indexed.atWOS
relation.isAuthorOfPublicatione544f464-5e4a-4fb5-a77a-957577c981c6
relation.isAuthorOfPublication.latestForDiscoverye544f464-5e4a-4fb5-a77a-957577c981c6

Files