Publication:
Prediction of colour strength in environmentally-friendly dyeing of polyester fabric with madder using supercritical carbon dioxide

dc.contributor.authorHaji, Aminoddin
dc.contributor.authorVadood, Morteza
dc.contributor.authorÖztürk, Merve
dc.contributor.authorYiğit, İdil
dc.contributor.authorEren, Semiha
dc.contributor.authorEren, Hüseyin Aksel
dc.contributor.buuauthorÖZTÜRK YILMAZ, MERVE
dc.contributor.buuauthorYİĞİT, İDİL
dc.contributor.buuauthorEREN, SEMİHA
dc.contributor.buuauthorEREN, HÜSEYİN AKSEL
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentTekstil Mühendisliği Bölümü
dc.contributor.departmentOrhaneli Meslek Yüksekokulu
dc.contributor.departmentTekstil, Giyim, Ayakkabı ve Deri Bölümü
dc.contributor.orcid0000-0003-2898-2176
dc.contributor.orcid0000-0002-1552-8612
dc.contributor.orcid0000-0003-3908-5139
dc.contributor.researcheridJCE-9094-2023
dc.contributor.researcheridAEQ-0877-2022
dc.contributor.researcheridGAA-0219-2022
dc.contributor.researcheridAFL-4209-2022
dc.date.accessioned2025-01-27T06:26:46Z
dc.date.available2025-01-27T06:26:46Z
dc.date.issued2024-03-03
dc.description.abstractThe textile industry is one of the significant reasons for global water pollution, with dyeing processes being particularly environmentally detrimental. Researchers have explored alternative approaches to address this issue, such as using natural dyes, supercritical fluids and so forth. In addition to environment-friendly approaches, reducing the number of experiments in studies, accurate production straightaway and using artificial intelligence (AI), one of the technologies of the present and the future that will provide significant support. Reaching clearer results with AI technology will not necessarily contribute to environment-friendly technologies. However, AI techniques, including artificial neural networks (ANNs) and adaptive neuro fuzzy interface system (ANFIS) were employed to predict the colour strength (K/S) of the dyed fabric based on process parameters. A comprehensive experimental design involving pressure, temperature, and time variations was conducted, and the results were analysed using multi-factor analysis of variance (MANOVA). The study demonstrates that supercritical carbon dioxide (scCO2) dyeing with madder on polyester fabric is a promising and environmentally friendly approach. Additionally, the optimised ANN and ANFIS models, aided by genetic algorithms (GAs), exhibit high predictive accuracy (less than 3%), providing insights into the impact of process parameters on colour strength. This research underscores the potential of AI-driven automation in textile dyeing, offering solutions for dye formula prediction, colour matching, and defect detection, reducing the need for human intervention in these processes.
dc.identifier.doi10.1111/cote.12757
dc.identifier.issn1472-3581
dc.identifier.scopus2-s2.0-85186905822
dc.identifier.urihttps://doi.org/10.1111/cote.12757
dc.identifier.urihttps://onlinelibrary.wiley.com/doi/10.1111/cote.12757
dc.identifier.urihttps://hdl.handle.net/11452/49825
dc.identifier.wos001178099100001
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherWiley
dc.relation.journalColoration Technology
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.relation.tubitak2221
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectChemistry
dc.subjectEngineering
dc.subjectMaterials science
dc.titlePrediction of colour strength in environmentally-friendly dyeing of polyester fabric with madder using supercritical carbon dioxide
dc.typeArticle
dc.typeEarly Access
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/Tekstil Mühendisliği Bölümü
local.contributor.departmentOrhaneli Meslek Yüksekokulu/Tekstil Giyim, Ayakkabı ve Deri Bölümü
local.indexed.atWOS
local.indexed.atScopus
relation.isAuthorOfPublicationf2c07234-a694-4ce8-81e6-bc658118b12c
relation.isAuthorOfPublication161e3b12-89eb-4c90-a428-2ba137767c24
relation.isAuthorOfPublication80ebec3b-5798-4aec-b1b6-5a403b38247e
relation.isAuthorOfPublication6538745e-ab2b-4869-940f-0bc94253e46f
relation.isAuthorOfPublication.latestForDiscoveryf2c07234-a694-4ce8-81e6-bc658118b12c

Files