Yayın:
Battery box design of electric vehicles using artificial neural network-assisted catch fish optimization algorithm

dc.contributor.authorMehta, Pranav
dc.contributor.authorSait, Sadiq M.
dc.contributor.buuauthorGÜRSES, DİLDAR
dc.contributor.buuauthorYILDIZ, ALİ RIZA
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentMakina Mühendisliği Ana Bilim Dalı
dc.contributor.researcheridJCN-8328-2023
dc.contributor.researcheridF-7426-2011
dc.date.accessioned2025-10-21T09:25:16Z
dc.date.issued2025-08-08
dc.description.abstractIn engineering and other fields, metaheuristic algorithms are increasingly used to solve challenging optimization problems. High-dimensional and multimodal issues are complex for traditional optimization techniques, which has led to the development of hybrid metaheuristics that are improved by artificial neural networks (ANNs). To improve search efficiency and solution accuracy, this work presents an ANN-assisted Catch Fish Optimization Algorithm (MCFOA), which draws inspiration from conventional fishing methods. Numerous engineering applications, such as the optimal design of the side profile of an electric vehicle battery box, shell and tube heat exchanger, industrial gear optimization, and welded beam cost minimization, show off the efficacy of MCFOA. For the novel battery case problems, the modified optimizer realized a 20 % improvement in the design compared to the initial design, as well as a 4.5 % improvement compared to the Starfish optimizer. Moreover, for the engineering design problems, the modified optimizer realized 4-10 % better results in terms of the best values of the fitness function. This shows the applicability and implementation of the proposed optimizer for the optimization of real-world engineering problems.
dc.identifier.doi10.1515/mt-2025-0075
dc.identifier.endpage1475
dc.identifier.issn0025-5300
dc.identifier.issue9
dc.identifier.startpage1463
dc.identifier.urihttps://doi.org/10.1515/mt-2025-0075
dc.identifier.urihttps://hdl.handle.net/11452/56013
dc.identifier.volume67
dc.identifier.wos001545331400001
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherWalter de gruyter gmbh
dc.relation.journalMaterials testing
dc.subjectMarine predators algorithm
dc.subjectSalp swarm algorithm
dc.subjectDifferential evolution
dc.subjectTopology design
dc.subjectRobust design
dc.subjectElectric vehicles
dc.subjectBattery box
dc.subjectSide profile
dc.subjectHeat exchanger
dc.subjectCatch fish optimizer
dc.subjectScience & Technology
dc.subjectTechnology
dc.subjectMaterials Science, Characterization & Testing
dc.subjectMaterials Science
dc.titleBattery box design of electric vehicles using artificial neural network-assisted catch fish optimization algorithm
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/Makina Mühendisliği Ana Bilim Dalı
local.indexed.atWOS
relation.isAuthorOfPublication1af1d254-5397-464d-b47b-7ddcbaff8643
relation.isAuthorOfPublication89fd2b17-cb52-4f92-938d-a741587a848d
relation.isAuthorOfPublication.latestForDiscovery1af1d254-5397-464d-b47b-7ddcbaff8643

Dosyalar

Orijinal seri

Şimdi gösteriliyor 1 - 1 / 1
Küçük Resim
Ad:
Gürses_vd_2025.pdf
Boyut:
2.11 MB
Format:
Adobe Portable Document Format

Koleksiyonlar