Publication:
Hybrid multi-objective shape design optimization using Taguchi's method and genetic algorithm

dc.contributor.buuauthorYıldız, Ali Rıza
dc.contributor.buuauthorÖztürk, Nursel
dc.contributor.buuauthorKaya, Necmettin
dc.contributor.buuauthorÖztürk, Ferruh
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.orcid0000-0002-8297-0777
dc.contributor.orcid0000-0003-1790-6987
dc.contributor.researcheridAAG-9336-2021
dc.contributor.researcheridR-4929-2018
dc.contributor.researcheridF-7426-2011
dc.contributor.researcheridAAG-9923-2021
dc.contributor.scopusid7102365439
dc.contributor.scopusid7005688805
dc.contributor.scopusid7005013334
dc.contributor.scopusid56271685800
dc.date.accessioned2022-08-11T12:28:19Z
dc.date.available2022-08-11T12:28:19Z
dc.date.issued2007-10
dc.description.abstractThis research is based on a new hybrid approach, which deals with the improvement of shape optimization process. The objective is to contribute to the development of more efficient shape optimization approaches in an integrated optimal topology and shape optimization area with the help of genetic algorithms and robustness issues. An improved genetic algorithm is introduced to solve multi-objective shape design optimization problems. The specific issue of this research is to overcome the limitations caused by larger population of solutions in the pure multi-objective genetic algorithm. The combination of genetic algorithm with robust parameter design through a smaller population of individuals results in a solution that leads to better parameter values for design optimization problems. The effectiveness of the proposed hybrid approach is illustrated and evaluated with test problems taken from literature. It is also shown that the proposed approach can be used as first stage in other multi-objective genetic algorithms to enhance the performance of genetic algorithms. Finally, the shape optimization of a vehicle component is presented to illustrate how the present approach can be applied for solving multi-objective shape design optimization problems.
dc.identifier.citationYıldız, A. R. (2007). "Hybrid multi-objective shape design optimization using Taguchi's method and genetic algorithm". Structural and Multidisciplinary Optimization, 34(4), 317-332.
dc.identifier.endpage332
dc.identifier.issn16151488
dc.identifier.issue4
dc.identifier.scopus2-s2.0-34548222738
dc.identifier.startpage317
dc.identifier.urihttps://doi.org/10.1007/s00158-006-0079-x
dc.identifier.urihttps://link.springer.com/article/10.1007%2Fs00158-006-0079-x
dc.identifier.urihttp://hdl.handle.net/11452/28174
dc.identifier.volume34
dc.identifier.wos000255419500003
dc.indexed.wosSCIE
dc.language.isoen
dc.publisherSpringer
dc.relation.journalStructural and Multidisciplinary Optimization
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectGenetic algorithms
dc.subjectMulti-objective optimization
dc.subjectShape optimization
dc.subjectTaguchi's method
dc.subjectTopology optimization
dc.subjectStructural optimization
dc.subjectNeural-network
dc.subjectSearch
dc.subjectParameter estimation
dc.subjectRobust parameters
dc.subjectShape optimization
dc.subjectVehicle components
dc.subjectGenetic algorithms
dc.subjectMultiobjective optimization
dc.subjectProblem solving
dc.subjectTaguchi methods
dc.subject.scopusMachining; Chatter; Turning
dc.subject.wosComputer science, interdisciplinary applications
dc.subject.wosEngineering, multidisciplinary
dc.subject.wosMechanics
dc.titleHybrid multi-objective shape design optimization using Taguchi's method and genetic algorithm
dc.typeArticle
dc.wos.quartileQ2 (Engineering, multidisciplinary)
dc.wos.quartileQ3
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi
local.indexed.atScopus
local.indexed.atWOS

Files

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: