Yayın:
On the fourth order of accuracy difference scheme for the Bitsadze-Samarskii type nonlocal boundary value problem

Placeholder

Tarih

Akademik Birimler

Kurum Yazarları

Öztürk, Elif

Yazarlar

Ashyralyev, Allaberen
Simos, T.E.

Danışman

Dil

Yayıncı:

American Institute of Physics

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Özet

The Bitsadze-Samarskii type nonlocal boundary value problem { -d(2)u(t)/dt(2) + Au(t) = f(t), 0 < t < 1, u(0) = phi, u(1) = Sigma(J)(j=1) alpha(j)u(lambda(j)) + psi, (1) Sigma(J)(j=1)vertical bar alpha(j)vertical bar <= 1, 0 < lambda(1) < lambda(2) < ... < lambda(J) < 1 for the differential equation in a Hilbert space H with the self -adjoint positive definite operator A is considered. The fourth order of accuracy difference scheme for approximate solution of the problem is presented. The well posedness of this difference scheme in difference analogue of Holder spaces is established.

Açıklama

Bu çalışma, 19-25 Eylül 2011 tarihlerinde Halkidiki[Yunanistan]'de düzenlenen International Conference on Numerical Analysis and Applied Mathematics (ICNAAM)'de bildiri olarak sunulmuştur.

Kaynak:

Anahtar Kelimeler:

Konusu

Mathematics, Elliptic equation, Nonlocal boundary value problem, Difference scheme, Stability

Alıntı

Ashyralyev, A. (2011). "On the fourth order of accuracy difference scheme for the Bitsadze-Samarskii type nonlocal boundary value problem". ed. T. E. Simos. AIP Conference Proceedings, Numerical Analysis and Applied Mathematics Icnaam 2011: International Conference on Numerical Analysis and Applied Mathematics, Vols A-C, 1389, 577-580.

Endorsement

Review

Supplemented By

Referenced By

0

Views

0

Downloads