Publication:
A parameter-free similarity graph for spectral clustering

dc.contributor.buuauthorİnkaya, Tülin
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentEndüstri Mühendisliği Bölümü
dc.contributor.orcid0000-0002-6260-0162
dc.contributor.researcheridAAH-2155-2021
dc.contributor.scopusid24490728300
dc.date.accessioned2022-09-09T08:22:23Z
dc.date.available2022-09-09T08:22:23Z
dc.date.issued2015-12-30
dc.description.abstractSpectral clustering is a popular clustering method due to its simplicity and superior performance in the data sets with non-convex clusters. The method is based on the spectral analysis of a similarity graph. Previous studies show that clustering results are sensitive to the selection of the similarity graph and its parameter(s). In particular, when there are data sets with arbitrary shaped clusters and varying density, it is difficult to determine the proper similarity graph and its parameters without a priori information. To address this issue, we propose a parameter-free similarity graph, namely Density Adaptive Neighborhood (DAN). DAN combines distance, density and connectivity information, and it reflects the local characteristics. We test the performance of DAN with a comprehensive experimental study. We compare k-nearest neighbor (KNN), mutual KNN, ε-neighborhood, fully connected graph, minimum spanning tree, Gabriel graph, and DAN in terms of clustering accuracy. We also examine the robustness of DAN to the number of attributes and the transformations such as decimation and distortion. Our experimental study with various artificial and real data sets shows that DAN improves the spectral clustering results, and it is superior to the competing approaches. Moreover, it facilitates the application of spectral clustering to various domains without a priori information.
dc.identifier.citationİnkaya, T. (2015). "A parameter-free similarity graph for spectral clustering". Expert Systems with Applications, 42(24), 9489-9498.
dc.identifier.endpage9498
dc.identifier.issn0957-4174
dc.identifier.issn1873-6793
dc.identifier.issue24
dc.identifier.scopus2-s2.0-84942333236
dc.identifier.startpage9489
dc.identifier.urihttps://doi.org/10.1016/j.eswa.2015.07.074
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0957417415005345?via%3Dihub
dc.identifier.urihttp://hdl.handle.net/11452/28604
dc.identifier.volume42
dc.identifier.wos000362857500010
dc.indexed.wosSCIE
dc.language.isoen
dc.publisherPergamon Elsevier Science
dc.relation.journalExpert Systems with Applications
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectSpectral clustering
dc.subjectSimilarity graph
dc.subjectK-nearest neighbor
dc.subjectEpsilon-neighborhood
dc.subjectFully connected graph
dc.subjectConstruction
dc.subjectDensity
dc.subjectComputer science
dc.subjectEngineering
dc.subjectOperations research & management science
dc.subjectClustering algorithms
dc.subjectGraph theory
dc.subjectMotion compensation
dc.subjectNearest neighbor search
dc.subjectSpectrum analysis
dc.subjectAdaptive neighborhood
dc.subjectConnected graph
dc.subjectConnectivity information
dc.subjectK nearest neighbor (KNN)
dc.subjectK-nearest neighbors
dc.subjectMinimum spanning trees
dc.subjectTrees (mathematics)
dc.subject.scopusSpectral Clustering; Cluster Analysis; Laplacian Matrix
dc.subject.wosComputer science, artificial intelligence
dc.subject.wosEngineering, electrical & electronic
dc.subject.wosOperations research & management science
dc.titleA parameter-free similarity graph for spectral clustering
dc.typeArticle
dc.wos.quartileQ1
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/Endüstri Mühendisliği Bölümü
local.indexed.atScopus
local.indexed.atWOS

Files

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: