Yayın:
Predicting compressive and splitting tensile strength of high volume fly ash roller compacted concrete using ann and ann-biogeography based optimization models

dc.contributor.authorUnverdi, Murteda
dc.contributor.authorKazemi, Ramin
dc.contributor.authorKaya, Yahya
dc.contributor.authorMardani, Naz
dc.contributor.authorMardani, Ali
dc.contributor.authorMirjalili, Seyedali
dc.contributor.buuauthorMARDANİ, ALİ
dc.contributor.buuauthorÜNVERDİ, MURTEDA
dc.contributor.buuauthorKazemi, Ramin
dc.contributor.buuauthorKaya, Yahya
dc.contributor.buuauthorMardani, Naz
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentİnşaat Mühendisliği Ana Bilim Dalı
dc.contributor.departmentFen Edebiyat Fakültesi
dc.contributor.departmentMatematik Eğitimi Ana Bilim Dalı
dc.contributor.researcheridC-7860-2015
dc.contributor.researcheridKEH-0351-2024
dc.contributor.researcheridNYT-2369-2025
dc.contributor.researcheridP-1372-2018
dc.date.accessioned2025-10-21T09:19:37Z
dc.date.issued2025-07-01
dc.description.abstractRoller compacted concrete (RCC) has gained prominence in the construction industry due to its durability, cost-effectiveness, and environmental benefits, particularly with the incorporation of high-volume fly ash (HVFA). However, traditional experimental approaches to evaluating RCC's mechanical properties, such as compressive strength (CS) and splitting tensile strength (STS), are resource-intensive and time-consuming. To address these challenges, this study explores the application of artificial intelligence (AI), specifically artificial neural networks (ANN) and a hybrid ANN-Biogeography-Based Optimization (ANN-BBO) model, to predict the CS and STS of RCC. A dataset comprising 168 RCC mixtures, incorporating various material and process parameters, was analyzed. The ANN-BBO model demonstrated superior predictive accuracy compared to a standalone ANN, with R2 values exceeding 0.98 for both CS and STS, significantly reducing error margins. The findings highlight the effectiveness of AI-driven modeling in optimizing RCC mix designs, minimizing experimental costs, and enhancing the sustainability of concrete production. This research underscores the potential of integrating AI with optimization techniques to refine RCC performance assessment, which enables and facilitates more efficient and sustainable infrastructure development.
dc.identifier.doi10.1038/s41598-025-05700-y
dc.identifier.issn2045-2322
dc.identifier.issue1
dc.identifier.scopus2-s2.0-105009542040
dc.identifier.urihttps://doi.org/10.1038/s41598-025-05700-y
dc.identifier.urihttps://hdl.handle.net/11452/55962
dc.identifier.volume15
dc.identifier.wos001522988400036
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherNature portfolio
dc.relation.journalScientific reports
dc.relation.tubitak222M425
dc.subject Mechanıcal-propertıes
dc.subjectNeural-networks
dc.subjectFıber
dc.subjectPerformance
dc.subjectDurabılıty
dc.subjectRoller compacted concrete
dc.subjectFly ash
dc.subjectCompressive strength
dc.subjectSplitting tensile strength
dc.subjectArtificial intelligence
dc.subjectOptimization technique
dc.subjectScience & Technology
dc.subjectMultidisciplinary Sciences
dc.subjectScience & Technology - Other Topics
dc.titlePredicting compressive and splitting tensile strength of high volume fly ash roller compacted concrete using ann and ann-biogeography based optimization models
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/İnşaat Mühendisliği Ana Bilim Dalı
local.indexed.atWOS
local.indexed.atScopus
relation.isAuthorOfPublicationdd2de18c-4ec0-4272-8671-0094502e4353
relation.isAuthorOfPublication267429c0-eef5-4bf2-86b3-9e03f531485f
relation.isAuthorOfPublication.latestForDiscoverydd2de18c-4ec0-4272-8671-0094502e4353

Dosyalar

Orijinal seri

Şimdi gösteriliyor 1 - 1 / 1
Placeholder
Ad:
Unverdi_vd_2025.pdf
Boyut:
6.73 MB
Format:
Adobe Portable Document Format