Publication:
Using conditional probabilities for automatic new topic identification

dc.contributor.buuauthorÖzmutlu, Seda
dc.contributor.buuauthorÖzmutlu, Hüseyin C.
dc.contributor.buuauthorBüyük, Buket
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentEndüstri Mühendisliği Bölümü
dc.contributor.researcheridAAH-4480-2021
dc.contributor.researcheridABH-5209-2020
dc.contributor.scopusid6603660605
dc.contributor.scopusid6603061328
dc.contributor.scopusid23570445900
dc.date.accessioned2023-03-13T05:56:10Z
dc.date.available2023-03-13T05:56:10Z
dc.date.issued2007
dc.description.abstractPurpose - One of the most important dimensions of search engine user information seeking behaviour is content-based behaviour. One of the main elements in developing a personalised intelligent search engine is new topic identification. The purpose of this study is to perform automatic new topic identification in search engine transaction logs using conditional probabilities of new topic arrivals. Design/methodology/approach - Sample data logs from FAST (currently owned by Yahoo!) and Excite (currently owned by IAC Search & Media) are used in the study. Conditional probabilities of new topic arrivals and topic continuations given query category are used to estimate new topic arrivals. Findings - The findings of this study show that the conditional probability approach reduced overestimation of topic shifts, increasing some performance measures to their highest ever value compared to previous studies. A straightforward procedure such as the conditional probability approach can be as successful as, and for some measures more successful than, more complex methods applied in previous automatic new topic identification studies. Originality/value - A straightforward procedure that can enable fast automatic new topic identification, a problem not yet solved, and an important step towards personalised search engines.
dc.identifier.citationÖzmutlu, S. vd. (2007). "Using conditional probabilities for automatic new topic identification". Online Information Review, 31(4), 491-515.
dc.identifier.endpage515
dc.identifier.issn14684527
dc.identifier.issue4
dc.identifier.scopus2-s2.0-39649110569
dc.identifier.startpage491
dc.identifier.urihttps://doi.org/10.1108/14684520710780449
dc.identifier.urihttps://www.emerald.com/insight/content/doi/10.1108/14684520710780449/full/html
dc.identifier.urihttp://hdl.handle.net/11452/31516
dc.identifier.volume34
dc.identifier.wos000249328100007
dc.indexed.wosSCIE
dc.indexed.wosSSCI
dc.language.isoen
dc.publisherEmerald Group Publishing
dc.relation.journalOnline Information Review
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectComputer science
dc.subjectInformation science & library science
dc.subjectInformation-seeking
dc.subjectWeb
dc.subjectUsers
dc.subjectLife
dc.subjectBehaviour
dc.subjectInformation services
dc.subjectQuery categories
dc.subjectSearch engines
dc.subjectTopic identification
dc.subjectInformation retrieval
dc.subjectSearch engines
dc.subjectStatistical analysis
dc.subjectOnline searching
dc.subjectProbability distributions
dc.subjectProblem solving
dc.subjectStatistical methods
dc.subjectUser interfaces
dc.subject.scopusQuery Reformulation; Image Indexing; Digital Libraries
dc.subject.wosComputer science, information systems
dc.subject.wosInformation science & library science
dc.titleUsing conditional probabilities for automatic new topic identification
dc.typeArticle
dc.wos.quartileQ2 (Information science & library science)
dc.wos.quartileQ3 (Computer science, information systems)
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/Endüstri Mühendisliği Bölümü
local.indexed.atScopus
local.indexed.atWOS

Files

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: