Yayın:
Automatic new topic identification in search engine transaction logs

dc.contributor.buuauthorÖzmutlu, H. Cenk
dc.contributor.buuauthorÇavdur, Fatih
dc.contributor.buuauthorÖzmutlu, Seda
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentEndüstri Mühendisliği Bölümü
dc.contributor.orcid0000-0001-8054-5606
dc.contributor.researcheridAAH-4480-2021
dc.contributor.researcheridAAG-9471-2021
dc.contributor.researcheridABH-5209-2020
dc.contributor.scopusid6603061328
dc.contributor.scopusid8419687000
dc.contributor.scopusid6603660605
dc.date.accessioned2021-11-18T06:02:15Z
dc.date.available2021-11-18T06:02:15Z
dc.date.issued2006
dc.description.abstractPurpose - Content analysis of search engine user queries is an important task, since successful exploitation of the content of queries can result in the design of efficient information retrieval algorithms of search engines, which can offer custom-tailored services to the web user. Identification of topic changes within a user search session is a key issue in content analysis of search engine user queries. The purpose of this study is to address these issues. Design/methodology/approach - This study applies genetic algorithms and Dempster-Shafer theory, proposed by He et al., to automatically identify topic changes in a user session by using statistical characteristics of queries, such as time intervals and query reformulation patterns. A sample data log from the Norwegian search engine FAST (currently owned by overture) is selected to apply Dempster-Shafer theory and genetic algorithms for identifying topic changes in the data log. Findings - As a result, 97.7 percent of topic shifts and 87.2 percent of topic continuations were estimated correctly. The findings are consistent with the previous application of the Dempster-Shafer theory and genetic algorithms on a different search engine data log. This finding could be implied as an indication that content-ignorant topic identification, using query patterns and time intervals, is a promising line of research. Originality/value - Studies an important dimension of user behavior in information retrieval.
dc.identifier.citationÖzmutlu, H. C. vd. (2006). ''Automatic new topic identification in search engine transaction logs''. Internet Research, 16(3), 323-338.
dc.identifier.doi10.1108/10662240610673727
dc.identifier.endpage338
dc.identifier.issn1066-2243
dc.identifier.issue3
dc.identifier.scopus2-s2.0-33745449182
dc.identifier.startpage323
dc.identifier.urihttps://doi.org/10.1108/10662240610673727
dc.identifier.urihttps://www.emerald.com/insight/content/doi/10.1108/10662240610673727/full/html
dc.identifier.urihttp://hdl.handle.net/11452/22697
dc.identifier.volume16
dc.identifier.wos000241266700007
dc.indexed.wosSCIE
dc.language.isoen
dc.publisherEmerald
dc.relation.journalInternet Research
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectBusiness & economics
dc.subjectComputer science
dc.subjectTelecommunications
dc.subjectSearch engines
dc.subjectInformation retrieval
dc.subjectIdentification
dc.subjectCluster analysis
dc.subjectLife
dc.subjectUsers
dc.subjectContext
dc.subjectWeb
dc.subjectInformation-seeking
dc.subject.scopusQuery Reformulation; Image Indexing; Digital Libraries
dc.subject.wosBusiness
dc.subject.wosComputer science, information systems
dc.subject.wosTelecommunications
dc.titleAutomatic new topic identification in search engine transaction logs
dc.typeArticle
dc.wos.quartileQ3 (Computer science, information systems)
dc.wos.quartileQ3 (Telecommunications)
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/Endüstri Mühendisliği Bölümü
local.indexed.atScopus
local.indexed.atWOS

Dosyalar

Lisanslı seri

Şimdi gösteriliyor 1 - 1 / 1
Placeholder
Ad:
license.txt
Boyut:
1.71 KB
Format:
Item-specific license agreed upon to submission
Açıklama