Publication:
Detection of dead entomopathogenic nematodes in microscope images using computer vision

dc.contributor.buuauthorKurtulmuş, Ferhat
dc.contributor.buuauthorUlu, Tufan Can
dc.contributor.departmentZiraat Fakültesi
dc.contributor.departmentZiraat Fakültesi
dc.contributor.departmentBiyosistem Mühendisliği Bölümü
dc.contributor.departmentBitki Koruma Bölümü Bölümü
dc.contributor.orcid0000-0003-3640-1474
dc.contributor.researcheridR-8053-2016
dc.contributor.researcheridB-6308-2011
dc.contributor.scopusid15848202900
dc.contributor.scopusid55955615200
dc.date.accessioned2024-02-14T06:25:06Z
dc.date.available2024-02-14T06:25:06Z
dc.date.issued2013-11-05
dc.description.abstractEntomopathogenic nematodes are soil-dwelling living organisms which have been widely used for controlling agricultural insect pests as part of biological control. Because easy to use procedures have been developed for their application using standard sprayers, they are one of the best alternatives to pesticides. In laboratory procedures, counting is the most common, laborious, time-consuming and approximate part of the studies conducted on entomopathogenic nematodes. Here, a novel method was proposed to detect and count dead Heterorhabditis bacteriophora nematodes from microscope images using computer vision. The proposed method consisted of three main algorithm steps: pre-processing to obtain the medial axes of the nematode worms as accurately as possible, separation of overlapped nematode worms with a skeleton analysis; and detection of dead nematodes using two different straighter line detection methods. The proposed method was tested on 68 microscope images which included 935 live worms and 780 dead worms. Proposed method was able to detect the worms in microscope images successfully with recognition rates of over 85%. (C) 2013 IAgrE. Published by Elsevier Ltd. All rights reserved.
dc.identifier.citationKurtulmuş, F. ve Ulu, T. C. (2013). "Detection of dead entomopathogenic nematodes in microscope images using computer vision". Biosystems Engineering, 118(1), 29-38.
dc.identifier.endpage38
dc.identifier.issn1537-5110
dc.identifier.issn1537-5129
dc.identifier.issue1
dc.identifier.scopus2-s2.0-84889672096
dc.identifier.startpage29
dc.identifier.urihttps://doi.org/10.1016/j.biosystemseng.2013.11.005
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S1537511013001815?via%3Dihub
dc.identifier.urihttps://hdl.handle.net/11452/39692
dc.identifier.volume118
dc.identifier.wos000331673700004
dc.indexed.wosSCIE
dc.language.isoen
dc.publisherAcademic Press Inc Elsevier Science
dc.relation.journalBiosystems Engineering
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectCaenorhabditis-elegans
dc.subjectSteinernema
dc.subjectMachine vision
dc.subjectHeterorhabditis
dc.subjectPopulations
dc.subjectAgriculture
dc.subject.scopusEntomopathogenic Nematodes; Biological Pest Control; Heterorhabditidae
dc.subject.wosAgricultural engineering
dc.subject.wosAgriculture, multidisciplinary
dc.titleDetection of dead entomopathogenic nematodes in microscope images using computer vision
dc.typeArticle
dc.wos.quartileQ1 (Agriculture, Multidisciplinary)
dc.wos.quartileQ2 (Agricultural Engineering)
dspace.entity.typePublication
local.contributor.departmentZiraat Fakültesi/Biyosistem Mühendisliği Bölümü
local.contributor.departmentZiraat Fakültesi/Bitki Koruma Bölümü Bölümü
local.indexed.atPubMed
local.indexed.atScopus

Files

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: