Publication:
A novel method for prediction of gas turbine power production degree-day method

dc.contributor.authorÜnver, Ümit
dc.contributor.authorKeleşoğlu, Alper
dc.contributor.buuauthorKılıç, Muhsin
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentMakina Mühendisliği Bölümü
dc.contributor.orcid0000-0003-2113-4510
dc.contributor.researcheridO-2253-2015
dc.contributor.scopusid57202677637
dc.date.accessioned2023-10-31T11:22:26Z
dc.date.available2023-10-31T11:22:26Z
dc.date.issued2018
dc.description.abstractGas turbines are widely used in the energy production. The quantity of the operating machines requires a special attention for prediction of power production in the energy marketing sector. Thus, the aim of this paper is to support the sector by making the prediction of power production more computable. By using the data from an operating power plant, correlation and regression analysis are performed and linear equation obtained for calculating useful power production vs atmospheric air temperature and a novel method, the gas turbine degree day method, was developed. The method has been addressed for calculating the isolation related issues for buildings so far. But in this paper, it is utilized to predict the theoretical maximum power production of the gas turbines in various climates for the first time. The results indicated that the difference of annual energy production capacity between the best and the last province options was calculated to be 7500 MWh approximately.
dc.description.sponsorshipYalova University Applied Science Center
dc.identifier.citationÜnver, Ü. vd. (2018). ''A novel method for prediction of gas turbine power production degree-day method''. Thermal Science, 22(Supplement 3), S809-S817.
dc.identifier.endpageS817
dc.identifier.issn0354-9836
dc.identifier.issn2334-7163
dc.identifier.issueSupplement 3
dc.identifier.scopus2-s2.0-85052485611
dc.identifier.startpageS809
dc.identifier.urihttps://doi.org/10.2298/TSCI170915015U
dc.identifier.urihttps://doiserbia.nb.rs/Article.aspx?ID=0354-98361800015U
dc.identifier.urihttp://hdl.handle.net/11452/34692
dc.identifier.volume22
dc.identifier.wos000441484700004
dc.indexed.wosSCIE
dc.language.isoen
dc.publisherVinca Institute of Nuclear Science
dc.relation.collaborationYurt içi
dc.relation.journalThermal Science
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectThermodynamics
dc.subjectGas turbine
dc.subjectDegree day
dc.subjectPrediction of energy production
dc.subjectAmbient temperature
dc.subjectEnergy prediction
dc.subjectEnvironmental-temperature
dc.subjectAmbient-temperature
dc.subjectPlants
dc.subjectOptimization
dc.subjectEfficiency
dc.subjectPerformance
dc.subjectParameters
dc.subjectFuel
dc.subjectForecasting
dc.subjectGases
dc.subjectRegression analysis
dc.subjectDegree days
dc.subjectDegree-day method
dc.subjectEnergy
dc.subjectEnergy productions
dc.subjectMarketing sectors
dc.subjectNovel methods
dc.subjectPower production
dc.subjectTurbine power
dc.subjectGas turbines
dc.subject.scopusGas Turbines; Gas; Air Cooling
dc.subject.wosThermodynamics
dc.titleA novel method for prediction of gas turbine power production degree-day method
dc.typeArticle
dc.wos.quartileQ3
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/Makina Mühendisliği Bölümü
local.indexed.atScopus
local.indexed.atWOS

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Kılıç_vd_2018.pdf
Size:
1000.77 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: