Publication: Integer solutions of a special Diophantine equation
Date
Authors
Özkoç, Arzu
Tekcan, Ahmet
Authors
Simos, T. E.
Advisor
Language
Publisher:
Amer Inst Pyhsics
Journal Title
Journal ISSN
Volume Title
Abstract
Let t not equal 1 be an integer. In this work, we determine the integer solutions of Diophantine equation D : x(2) + (2-t(2))y(2)+(-2t(2) - 2t + 2)x+(2t(5) - 6t(3) + 4t)y - t(8) + 4t(6) - 4t(4) + 2t(3) + t(2) - 2t - 0 over Z and also over finite fields F-p for primes p >= 2. Also we derive some recurrence relations on the integer solutions (x(n), y(n)) of D and formulate the the n-th solution (x(n), y(n)) by using the simple continued fraction expansion of x(n)/y(n).
Description
Bu çalışma, 19-25 Eylül 2011 tarihleri arasında Halkidiki[Yunanistan]’da düzenlenen International Conference on Numerical Analysis and Applied Mathematics (ICNAAM)’da bildiri olarak sunulmuştur.
Source:
Keywords:
Keywords
Mathematics, Diophantine equation, Pell equation, Continued fraction, Recurrence relations
Citation
Karasu, A. vd. (2011). "Integer solutions of a special Diophantine equation". ed. T. E. Simos. AIP Conference Proceedings, Numerical Analysis and Applied Mathematics Icnaam 2011: International Conference on Numerical Analysis and Applied Mathematics, 1389, 371-374.