Yayın:
Prediction of induction parameters on toroidal wound cores using neural network

dc.contributor.authorKüçük, İlker
dc.contributor.authorDerebasi, Naim
dc.contributor.buuauthorKÜÇÜK, İLKER
dc.contributor.buuauthorDEREBAŞI, NAİM
dc.contributor.departmentFen-Edebiyat Fakültesi
dc.contributor.departmentFizik Bölümü
dc.contributor.scopusid6602910810
dc.contributor.scopusid11540936300
dc.date.accessioned2025-05-13T14:06:46Z
dc.date.issued2007-01-01
dc.description.abstractThis paper presents a new approach based on neural network to predict the induction parameters of the toroidal wound cores. The input parameters were the geometrical dimensions of the toroidal core, frequency and magnetic flux density. A total of 3176 input vector from previously measured 52 varied dimensions and built 27M4 material toroidal samples were available in the training set to a back-propagation feed forward neural network. The sigmoid and hyperbolic tangent transfer functions and full connectivity were used in the hidden layers. The correlation coefficients for the total harmonic distortion and form factor were found to be 0.99 and 0.98, respectively after the network was trained. © 2007 Elsevier B.V. All rights reserved.
dc.identifier.doi10.1016/j.jmmm.2007.02.135
dc.identifier.endpagee329
dc.identifier.issn0304-8853
dc.identifier.issue2 SPEC. ISS.
dc.identifier.scopus2-s2.0-34250314009
dc.identifier.startpagee327
dc.identifier.urihttps://hdl.handle.net/11452/52753
dc.identifier.volume316
dc.indexed.scopusScopus
dc.language.isoen
dc.publisherElsevier
dc.relation.journalJournal of Magnetism and Magnetic Materials
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectToroidal wound cores
dc.subjectInduction parameters
dc.subjectArtificial neural network
dc.subject.scopusMagnetic Core; Flux Density; Electrical Steel
dc.titlePrediction of induction parameters on toroidal wound cores using neural network
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentFen-Edebiyat Fakültesi/Fizik Bölümü
local.indexed.atScopus
relation.isAuthorOfPublicationa349a06c-7ca6-4a27-8708-8157e5962651
relation.isAuthorOfPublication0c85f61f-70fa-4f0d-83a0-a3a0ac50e069
relation.isAuthorOfPublication.latestForDiscoverya349a06c-7ca6-4a27-8708-8157e5962651

Dosyalar