Publication:
Some properties on the lexicographic product of graphs obtained by monogenic semigroups Proceedings of the International Congress in Honour of Professor Hari M. Srivastava

dc.contributor.authorAkgüneş, N.
dc.contributor.authorDaş, K.
dc.contributor.authorÇevik, A.
dc.contributor.authorCangül, İ.
dc.contributor.buuauthorCANGÜL, İSMAİL NACİ
dc.contributor.departmentFen-Edebiyat Fakültesi
dc.contributor.departmentMatematik Bölümü
dc.contributor.orcid0000-0002-0700-5774
dc.contributor.scopusid57189022403
dc.date.accessioned2025-05-13T10:12:28Z
dc.date.issued2013-07-05
dc.description.abstractIn (Das et al. in J. Inequal. Appl. 2013:44, 2013), a new graph [InlineEquation not available: see fulltext.] on monogenic semigroups [InlineEquation not available: see fulltext.] (with zero) having elements [InlineEquation not available: see fulltext.] was recently defined. The vertices are the non-zero elements [InlineEquation not available: see fulltext.] and, for [InlineEquation not available: see fulltext.], any two distinct vertices [InlineEquation not available: see fulltext.] and [InlineEquation not available: see fulltext.] are adjacent if [InlineEquation not available: see fulltext.] in [InlineEquation not available: see fulltext.]. As a continuing study, in an unpublished work, some well-known indices (first Zagreb index, second Zagreb index, Randić index, geometric-arithmetic index, atom-bond connectivity index, Wiener index, Harary index, first and second Zagreb eccentricity indices, eccentric connectivity index, the degree distance) over [InlineEquation not available: see fulltext.] were investigated by the same authors of this paper. In the light of the above references, our main aim in this paper is to extend these studies to the lexicographic product over [InlineEquation not available: see fulltext.]. In detail, we investigate the diameter, radius, girth, maximum and minimum degree, chromatic number, clique number and domination number for the lexicographic product of any two (not necessarily different) graphs [InlineEquation not available: see fulltext.] and [InlineEquation not available: see fulltext.]. MSC: 05C10, 05C12, 06A07, 15A18, 15A36.
dc.identifier.doi10.1186/1029-242X-2013-238
dc.identifier.issn1029-242X
dc.identifier.scopus2-s2.0-84879574895
dc.identifier.urihttps://hdl.handle.net/11452/52515
dc.identifier.urihttps://link.springer.com/content/pdf/10.1186/1029-242X-2013-238.pdf
dc.identifier.volume2013
dc.indexed.scopusScopus
dc.language.isoen
dc.publisherSpringer
dc.relation.journalJournal of Inequalities and Applications
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectMonogenic semigroup
dc.subjectLexicographic product
dc.subjectIndependence number
dc.subjectDomination number
dc.subjectClique number
dc.subjectChromatic number
dc.subject.scopusZero Divisor; Clique Number ω; Commutative Ring
dc.titleSome properties on the lexicographic product of graphs obtained by monogenic semigroups Proceedings of the International Congress in Honour of Professor Hari M. Srivastava
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentFen-Edebiyat Fakültesi/Matematik Bölümü
relation.isAuthorOfPublication601ef81f-9bdf-4a4a-9ac1-82a82260384d
relation.isAuthorOfPublication.latestForDiscovery601ef81f-9bdf-4a4a-9ac1-82a82260384d

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Cangul_vd_2013.pdf
Size:
242.49 KB
Format:
Adobe Portable Document Format

Collections