Publication:
Energy-efficient anomaly detection and chaoticity in electric vehicle driving behavior

dc.contributor.authorSavran, Efe
dc.contributor.authorKarpat, Esin
dc.contributor.authorKarpat, Fatih
dc.contributor.buuauthorSavran, Efe
dc.contributor.buuauthorKARPAT, ESİN
dc.contributor.buuauthorKARPAT, FATİH
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentMakine Mühendisliği Bölümü
dc.contributor.departmentElektrik-Elektronik Mühendisliği Bölümü
dc.contributor.orcid0000-0001-8474-7328
dc.contributor.orcid0000-0002-9518-6498
dc.contributor.orcid0000-0002-2740-8183
dc.contributor.researcheridAAH-3387-2021
dc.contributor.researcheridA-5259-2018
dc.contributor.researcheridIUG-4938-2023
dc.date.accessioned2025-01-30T11:45:02Z
dc.date.available2025-01-30T11:45:02Z
dc.date.issued2024-09-01
dc.description.abstractDetection of abnormal situations in mobile systems not only provides predictions about risky situations but also has the potential to increase energy efficiency. In this study, two real-world drives of a battery electric vehicle and unsupervised hybrid anomaly detection approaches were developed. The anomaly detection performances of hybrid models created with the combination of Long Short-Term Memory (LSTM)-Autoencoder, the Local Outlier Factor (LOF), and the Mahalanobis distance were evaluated with the silhouette score, Davies-Bouldin index, and Calinski-Harabasz index, and the potential energy recovery rates were also determined. Two driving datasets were evaluated in terms of chaotic aspects using the Lyapunov exponent, Kolmogorov-Sinai entropy, and fractal dimension metrics. The developed hybrid models are superior to the sub-methods in anomaly detection. Hybrid Model-2 had 2.92% more successful results in anomaly detection compared to Hybrid Model-1. In terms of potential energy saving, Hybrid Model-1 provided 31.26% superiority, while Hybrid Model-2 provided 31.48%. It was also observed that there is a close relationship between anomaly and chaoticity. In the literature where cyber security and visual sources dominate in anomaly detection, a strategy was developed that provides energy efficiency-based anomaly detection and chaotic analysis from data obtained without additional sensor data.
dc.identifier.doi10.3390/s24175628
dc.identifier.eissn1424-8220
dc.identifier.issue17
dc.identifier.scopus2-s2.0-85203851625
dc.identifier.urihttps://doi.org/10.3390/s24175628
dc.identifier.urihttps://www.mdpi.com/1424-8220/24/17/5628
dc.identifier.urihttps://pmc.ncbi.nlm.nih.gov/articles/PMC11397768/
dc.identifier.urihttps://hdl.handle.net/11452/49949
dc.identifier.volume24
dc.identifier.wos001311759700001
dc.indexed.scopusScopus
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherMDPI
dc.relation.journalSensors
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.relation.tubitak119C154
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectAnomaly detection
dc.subjectLong short-term memory
dc.subjectLocal outlier factor
dc.subjectMahalanobis distance
dc.subjectEnergy optimization
dc.subjectMachine learning
dc.subjectChaoticity
dc.subjectScience & technology
dc.subjectPhysical sciences
dc.subjectTechnology
dc.subjectChemistry, analytical
dc.subjectEngineering, electrical & electronic
dc.subjectInstruments & instrumentation
dc.subjectChemistry
dc.subjectEngineering
dc.titleEnergy-efficient anomaly detection and chaoticity in electric vehicle driving behavior
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/Makine Mühendisliği Bölümü
local.contributor.departmentMühendislik Fakültesi/Elektrik-Elektronik Mühendisliği Bölümü
local.indexed.atScopus
local.indexed.atWOS
relation.isAuthorOfPublication99e2dd84-0120-4c04-a2f5-3b242abc84f2
relation.isAuthorOfPublication56b8a5d3-7046-4188-ad6e-1ae947a1b51d
relation.isAuthorOfPublication.latestForDiscovery99e2dd84-0120-4c04-a2f5-3b242abc84f2

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Savran_vd_2024.pdf
Size:
8.19 MB
Format:
Adobe Portable Document Format