Yayın:
Energy-efficient anomaly detection and chaoticity in electric vehicle driving behavior

dc.contributor.authorSavran, Efe
dc.contributor.authorKarpat, Esin
dc.contributor.authorKarpat, Fatih
dc.contributor.buuauthorSavran, Efe
dc.contributor.buuauthorKARPAT, ESİN
dc.contributor.buuauthorKARPAT, FATİH
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentMakine Mühendisliği Ana Bilim Dalı
dc.contributor.departmentElektrik ve Elektronik Mühendisliği Ana Bilim Dalı
dc.contributor.orcid0000-0001-8474-7328
dc.contributor.orcid0000-0002-9518-6498
dc.contributor.orcid0000-0002-2740-8183
dc.contributor.researcheridAAH-3387-2021
dc.contributor.researcheridA-5259-2018
dc.contributor.researcheridIUG-4938-2023
dc.date.accessioned2025-01-30T11:45:02Z
dc.date.available2025-01-30T11:45:02Z
dc.date.issued2024-09-01
dc.description.abstractDetection of abnormal situations in mobile systems not only provides predictions about risky situations but also has the potential to increase energy efficiency. In this study, two real-world drives of a battery electric vehicle and unsupervised hybrid anomaly detection approaches were developed. The anomaly detection performances of hybrid models created with the combination of Long Short-Term Memory (LSTM)-Autoencoder, the Local Outlier Factor (LOF), and the Mahalanobis distance were evaluated with the silhouette score, Davies-Bouldin index, and Calinski-Harabasz index, and the potential energy recovery rates were also determined. Two driving datasets were evaluated in terms of chaotic aspects using the Lyapunov exponent, Kolmogorov-Sinai entropy, and fractal dimension metrics. The developed hybrid models are superior to the sub-methods in anomaly detection. Hybrid Model-2 had 2.92% more successful results in anomaly detection compared to Hybrid Model-1. In terms of potential energy saving, Hybrid Model-1 provided 31.26% superiority, while Hybrid Model-2 provided 31.48%. It was also observed that there is a close relationship between anomaly and chaoticity. In the literature where cyber security and visual sources dominate in anomaly detection, a strategy was developed that provides energy efficiency-based anomaly detection and chaotic analysis from data obtained without additional sensor data.
dc.identifier.doi10.3390/s24175628
dc.identifier.eissn1424-8220
dc.identifier.issue17
dc.identifier.scopus2-s2.0-85203851625
dc.identifier.urihttps://doi.org/10.3390/s24175628
dc.identifier.urihttps://www.mdpi.com/1424-8220/24/17/5628
dc.identifier.urihttps://pmc.ncbi.nlm.nih.gov/articles/PMC11397768/
dc.identifier.urihttps://hdl.handle.net/11452/49949
dc.identifier.volume24
dc.identifier.wos001311759700001
dc.indexed.scopusScopus
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherMDPI
dc.relation.journalSensors
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.relation.tubitak119C154
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectAnomaly detection
dc.subjectLong short-term memory
dc.subjectLocal outlier factor
dc.subjectMahalanobis distance
dc.subjectEnergy optimization
dc.subjectMachine learning
dc.subjectChaoticity
dc.subjectScience & technology
dc.subjectPhysical sciences
dc.subjectTechnology
dc.subjectChemistry, analytical
dc.subjectEngineering, electrical & electronic
dc.subjectInstruments & instrumentation
dc.subjectChemistry
dc.subjectEngineering
dc.titleEnergy-efficient anomaly detection and chaoticity in electric vehicle driving behavior
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/Makine Mühendisliği Ana Bilim Dalı
local.contributor.departmentMühendislik Fakültesi/Elektrik ve Elektronik Mühendisliği Ana Bilim Dalı
local.indexed.atScopus
local.indexed.atWOS
relation.isAuthorOfPublication99e2dd84-0120-4c04-a2f5-3b242abc84f2
relation.isAuthorOfPublication56b8a5d3-7046-4188-ad6e-1ae947a1b51d
relation.isAuthorOfPublication.latestForDiscovery99e2dd84-0120-4c04-a2f5-3b242abc84f2

Dosyalar

Orijinal seri

Şimdi gösteriliyor 1 - 1 / 1
Küçük Resim
Ad:
Savran_vd_2024.pdf
Boyut:
8.19 MB
Format:
Adobe Portable Document Format