Publication:
A new hybrid Harris hawks-Nelder-Mead optimization algorithm for solving design and manufacturing problems

dc.contributor.authorSait, Sadiq M.
dc.contributor.authorBureerat, Sujin
dc.contributor.authorPholdee, Nantiwai
dc.contributor.buuauthorYıldız, Betül Sultan
dc.contributor.buuauthorYıldız, Ali Rıza
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentMakine Mühendisliği Bölümü
dc.contributor.departmentMakine Mühendisliği Bölümü
dc.contributor.orcid0000-0001-7592-8733
dc.contributor.orcid0000-0003-1790-6987
dc.contributor.researcheridF-7426-2011
dc.contributor.researcheridAAL-9234-2020
dc.contributor.researcheridAAH-6495-2019
dc.contributor.scopusid7102365439
dc.contributor.scopusid57094682600
dc.date.accessioned2022-11-28T13:33:10Z
dc.date.available2022-11-28T13:33:10Z
dc.date.issued2019-08
dc.description.abstractIn this paper, a novel hybrid optimization algorithm (H-HHONM) which combines the Nelder-Mead local search algorithm with the Harris hawks optimization algorithm is proposed for solving real-world optimization problems. This paper is the first research study in which both the Harris hawks optimization algorithm and the H-HHONM are applied for the optimization of process parameters in milling operations. The H-HHONM is evaluated using well-known benchmark problems such as the three-bar truss problem, cantilever beam problem, and welded beam problem. Finally, a milling manufacturing optimization problem is solved for investigating the performance of the H-HHONM. Additionally, the salp swarm algorithm is used to solve the milling problem. The results of the H-HHONM for design and manufacturing problems solved in this paper are compared with other optimization algorithms presented in the literature such as the ant colony algorithm, genetic algorithm, particle swarm optimization algorithm, simulated annealing algorithm, artificial bee colony algorithm, teaching learning-based optimization algorithm, cuckoo search algorithm, multi-verse optimization algorithm, Harris hawks optimization optimization algorithm, gravitational search algorithm, ant lion optimizer, moth-flame optimization algorithm, symbiotic organisms search algorithm, and mine blast algorithm. The results show that H-HHONM is an effective optimization approach for optimizing both design and manufacturing optimization problems.
dc.description.sponsorshipKing Fahd University of Petroleum and Minerals
dc.description.sponsorshipKaen University
dc.identifier.citationYıldız, A. R. vd. (2019). ''A new hybrid Harris hawks-Nelder-Mead optimization algorithm for solving design and manufacturing problems''. Materials Testing, 61(8), 735-743.
dc.identifier.endpage743
dc.identifier.issn0025-5300
dc.identifier.issn2195-8572
dc.identifier.issue8
dc.identifier.scopus2-s2.0-85072323937
dc.identifier.startpage735
dc.identifier.urihttps://doi.org/10.3139/120.111378
dc.identifier.urihttps://www.degruyter.com/document/doi/10.3139/120.111378/html
dc.identifier.urihttp://hdl.handle.net/11452/29604
dc.identifier.volume61
dc.identifier.wos000478759900004
dc.indexed.wosSCIE
dc.language.isoen
dc.publisherWalter de Gruyter
dc.relation.collaborationYurt dışı
dc.relation.journalMaterials Testing
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectHarris hawks algorithm
dc.subjectNelder mead
dc.subjectHybrid optimization
dc.subjectMillingdesign
dc.subjectParticle swarm optimization
dc.subjectOptimal machining parameters
dc.subjectSurface grinding process
dc.subjectMultiobjective optimization
dc.subjectStructural optimization
dc.subjectMemetic agorithms
dc.subjectDifferential evolution
dc.subjectGlobal optimization
dc.subjectMilling operations
dc.subjectGenetic algorithm
dc.subjectAnt colony optimization
dc.subjectDesign
dc.subjectGenetic algorithms
dc.subjectLearning algorithms
dc.subjectMilling (machining)
dc.subjectSimulated annealing
dc.subjectArtificial bee colony algorithms
dc.subjectGravitational search algorithms
dc.subjectHybrid optimization
dc.subjectNelder meads
dc.subjectOptimization of process parameters
dc.subjectTeaching-learning-based optimizations
dc.subjectManufacture
dc.subjectAnt colony optimization
dc.subjectDesign
dc.subjectGenetic algorithms
dc.subjectLearning algorithms
dc.subjectMilling (machining)
dc.subjectSimulated annealing
dc.subjectGravitational search algorithms
dc.subjectHybrid optimization
dc.subjectNelder meads
dc.subjectOptimization of process parameters
dc.subjectParticle swarm optimization algorithm
dc.subjectSimulated annealing algorithms
dc.subjectTeaching-learning-based optimizations
dc.subject.scopusCutting Process; Chatter; Turning
dc.subject.wosMaterials science, characterization & testing
dc.titleA new hybrid Harris hawks-Nelder-Mead optimization algorithm for solving design and manufacturing problems
dc.typeArticle
dc.wos.quartileQ4
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/Makine Mühendisliği Bölümü
local.contributor.departmentMühendislik Fakültesi/Makine Mühendisliği Bölümü
local.indexed.atScopus
local.indexed.atWOS

Files

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: