Yayın:
A comparative study of recent multi-objective metaheuristics for solving constrained truss optimisation problems

dc.contributor.authorPanagant, Natee
dc.contributor.authorPholdee, Nantiwat
dc.contributor.authorBureerat, Sujin
dc.contributor.authorMirjalili, Seyedali
dc.contributor.buuauthorYıldız, Ali Rıza
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentMakina Mühendisliği
dc.contributor.orcid0000-0003-1790-6987
dc.contributor.researcheridF-7426-2011
dc.contributor.scopusid7102365439
dc.date.accessioned2024-01-24T06:02:13Z
dc.date.available2024-01-24T06:02:13Z
dc.date.issued2021-08
dc.description.abstractMulti-objective truss optimisation is a research topic that has been less investigated in the literature compared to the single-objective cases. This paper investigates the comparative performance of fourteen new and established multi-objective metaheuristics when solving truss optimisation problems. The optimisers include multi-objective ant lion optimiser, multi-objective dragonfly algorithm, multi-objective grasshopper optimisation algorithm, multi-objective grey wolf optimiser, multi-objective multi-verse optimisation, multi-objective water cycle algorithm, multi-objective Salp swarm algorithm, success history-based adaptive multi-objective differential evolution, success history-based adaptive multi-objective differential evolution with whale optimisation, non-dominated sorting genetic algorithm II, hybridisation of real-code population-based incremental learning and differential evolution, differential evolution for multi-objective optimisation, multi-objective evolutionary algorithm based on decomposition, and unrestricted population size evolutionary multi-objective optimisation algorithm. The design problem is assigned to minimise structural mass and compliance subject to stress constraints. Eight classical trusses found in the literature are used for setting up the design test problems. Various optimisers are then implemented to tackle the problems. A comprehensive comparative study is given to critically analyse the performance of all algorithms in this problem area. The results provide new insights to the pros and cons of evolutionary multi-objective optimisation algorithms when addressing multiple, often conflicting objective in truss optimisation. The results and findings of this work assist with not only solving truss optimisation problem better but also designing customised algorithms for such problems.
dc.description.sponsorshipThailand Research Fund (TRF) (RTA6180010)
dc.identifier.citationYıldız, A. R. vd. (2021). "A comparative study of recent multi-objective metaheuristics for solving constrained truss optimisation problems". Archives of Computational Methods in Engineering, 28(5), 4031-4047.
dc.identifier.doihttps://doi.org/10.1007/s11831-021-09531-8
dc.identifier.endpage4047
dc.identifier.issn1134-3060
dc.identifier.issn1886-1784
dc.identifier.issue5
dc.identifier.scopus2-s2.0-85100149962
dc.identifier.startpage4031
dc.identifier.urihttps://link.springer.com/article/10.1007/s11831-021-09531-8
dc.identifier.urihttps://hdl.handle.net/11452/39285
dc.identifier.volume28
dc.identifier.wos000608094700001
dc.indexed.wosSCIE
dc.language.isoen
dc.publisherSpringer
dc.relation.collaborationYurt dışı
dc.relation.journalArchives of Computational Methods in Engineering
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectTopology optimization
dc.subjectSize optimization
dc.subjectSizing optimization
dc.subjectGenetic algorithm
dc.subjectShape
dc.subjectDesign
dc.subjectApproxımate
dc.subjectSearch
dc.subjectConstrained optimization
dc.subjectGenetic algorithms
dc.subjectHeuristic algorithms
dc.subjectPopulation statistics
dc.subjectTrusses
dc.subjectComparative performance
dc.subjectConflicting objectives
dc.subjectEvolutionary multi-objectives
dc.subjectMulti objective evolutionary algorithms
dc.subjectMulti-objective differential evolutions
dc.subjectMulti-objective metaheuristics
dc.subjectNon-dominated sorting genetic algorithm - ii
dc.subjectPopulation based incremental learning
dc.subjectMultiobjective optimization
dc.subject.scopusSteel; Trusses; Optimum Design
dc.subject.wosComputer Science, Interdisciplinary Applications
dc.subject.wosEngineering, Multidisciplinary
dc.subject.wosMathematics, Interdisciplinary Applications
dc.titleA comparative study of recent multi-objective metaheuristics for solving constrained truss optimisation problems
dc.typeArticle
dc.typeReview
dc.wos.quartileQ1
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/Makina Mühendisliği
local.indexed.atScopus
local.indexed.atWOS

Dosyalar

Lisanslı seri

Şimdi gösteriliyor 1 - 1 / 1
Placeholder
Ad:
license.txt
Boyut:
1.71 KB
Format:
Item-specific license agreed upon to submission
Açıklama