Yayın:
Detection of hyperglycemia and hypoglycemia using deep learning from facial images obtained with an ai image generator

dc.contributor.authorNogay, Hıdır Selçuk
dc.contributor.authorNogay, Nalan Hakime
dc.contributor.authorAdeli, Hojjat
dc.contributor.buuauthorNOĞAY, HIDIR SELÇUK
dc.contributor.buuauthorNOĞAY, NALAN HAKİME
dc.contributor.departmentTeknik Bilimler Meslek Yüksekokulu
dc.contributor.departmentElektrik ve Enerji, Hibrid ve Elektrikli Taşıtlar Teknolojisi Bölümü
dc.contributor.departmentSağlık Bilimleri Yüksekokulu
dc.contributor.departmentBeslenme ve Diyetetik Bölümü
dc.contributor.researcheridMBI-0869-2025
dc.contributor.researcheridJPK-1615-2023
dc.date.accessioned2025-11-06T16:55:47Z
dc.date.issued2026-01-01
dc.description.abstractThe identification of hyperglycemia and hypoglycemia is paramount in diabetes care, facilitating prompt interventions to mitigate potential health complications. A novel method is introduced for identifying glycemic states using deep learning from facial images generated by artificial intelligence (AI). Specifically, the EfficientB0 model-a pre-trained convolutional neural network (CNN)-is employed, utilizing the transfer learning technique to leverage its learned features for glycemic state classification. The proposed method offers a non-invasive and remote monitoring solution, allowing for convenient glycemic status assessment without the need for invasive procedures or continuous glucose monitoring devices. The experimental results confirm the effectiveness of the proposed method. The achieved accuracy rates, recall rates, and F1-scores validate the model's ability to accurately identify individuals at risk of glycemic abnormalities. The integration of deep learning techniques with facial image analysis holds promise for personalized healthcare solutions tailored to individuals with diabetes, facilitating early detection and intervention for improved glycemic control. By leveraging AI-driven facial image analysis, individuals with diabetes can benefit from early detection and prediction of hyperglycemic and hypoglycemic events, enabling timely interventions and adjustments in treatment regimens. This approach holds promise for improving glycemic control, reducing the risk of acute complications, and enhancing overall quality of life for individuals with diabetes. The non-invasive approach for detecting glycemic states presented in this paper has the potential to revolutionize healthcare management for individuals with diabetes.
dc.identifier.doi10.1016/j.bspc.2025.108351
dc.identifier.issn1746-8094
dc.identifier.scopus2-s2.0-105011265707
dc.identifier.urihttps://doi.org/10.1016/j.bspc.2025.108351
dc.identifier.urihttps://hdl.handle.net/11452/56698
dc.identifier.volume111
dc.identifier.wos001540139800001
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherElsevier sci ltd
dc.relation.journalBiomedical signal processing and control
dc.subjectPrediction
dc.subjectHyperglycemia
dc.subjectHypoglycemia
dc.subjectDeep Learning
dc.subjectConvolutional neural networks, or CNNs
dc.subjectTransfer learning
dc.subjectFacial images
dc.subjectImage generator
dc.subjectEfficientB0
dc.subjectScience & technology
dc.subjectTechnology
dc.subjectEngineering, biomedical
dc.subjectEngineering
dc.titleDetection of hyperglycemia and hypoglycemia using deep learning from facial images obtained with an ai image generator
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentTeknik Bilimler Meslek Yüksekokulu/Elektrik ve Enerji, Hibrid ve Elektrikli Taşıtlar Teknolojisi Bölümü
local.contributor.departmentSağlık Bilimleri Yüksekokulu/Beslenme ve Diyetetik Bölümü
local.indexed.atWOS
local.indexed.atScopus
relation.isAuthorOfPublication46ad5538-7745-40df-9798-f5b15f3fd19a
relation.isAuthorOfPublicationf4945ace-0c55-48af-bf5f-2015472ce72f
relation.isAuthorOfPublication.latestForDiscovery46ad5538-7745-40df-9798-f5b15f3fd19a

Dosyalar