Publication:
Neural network applications for automatic new topic identification

dc.contributor.buuauthorÖzmutlu, Seda
dc.contributor.buuauthorÇavdur, Fatih
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentEndüstri Mühendisliği Bölümü
dc.contributor.orcid0000-0001-8054-5606
dc.contributor.researcheridAAH-4480-2021
dc.contributor.researcheridAAG-9471-2021
dc.date.accessioned2021-07-29T13:04:54Z
dc.date.available2021-07-29T13:04:54Z
dc.date.issued2005
dc.description.abstractPurpose - This study aims to propose an artificial neural network to identify automatically topic changes in a user session by using the statistical characteristics of queries, such as time intervals and query reformulation patterns. Design/methodology/approach - A sample data log from the Norwegian search engine FAST (currently owned by Overture) is selected to train the neural network and then the neural network is used to identify topic changes in the data log. Findings - A total of 98.4 percent of topic shifts and 86.6 percent of topic continuations were estimated correctly. Originality/value - Content analysis of search engine user queries is an important task, since successful exploitation of the content of queries can result in the design of efficient information retrieval algorithms for search engines, which can offer custom-tailored services to the web user. Identification of topic changes within a user search session is a key issue in the content analysis of search engine user queries.
dc.identifier.citationÖzmutlu, S. ve Çavdur, F. (2005). "Neural network applications for automatic new topic identification". Online Information Review, 29(1), 34-53.
dc.identifier.endpage53
dc.identifier.issn1468-4527
dc.identifier.issue1
dc.identifier.scopus2-s2.0-18844372333
dc.identifier.startpage34
dc.identifier.urihttps://doi.org/10.1108/14684520510583936
dc.identifier.urihttps://www.emerald.com/insight/content/doi/10.1108/14684520510583936/full/html
dc.identifier.urihttp://hdl.handle.net/11452/21326
dc.identifier.volume29
dc.identifier.wos000228460500003
dc.indexed.wosSCIE
dc.indexed.wosSSCI
dc.language.isoen
dc.publisherEmerald Group Publishing Limited
dc.relation.journalOnline Information Review
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectSearch engine
dc.subjectNeural nets
dc.subjectInformation retrieval
dc.subjectInformation-seeking
dc.subjectWeb queries
dc.subjectUsers
dc.subjectContext
dc.subjectTrends
dc.subjectLogs
dc.subjectLife
dc.subjectComputer science
dc.subjectInformation science & library science
dc.subjectAlgorithms
dc.subjectData acquisition
dc.subjectIdentification (control systems)
dc.subjectInformation retrieval
dc.subjectQuery languages
dc.subjectSearch engines
dc.subjectUser interfaces
dc.subjectData log
dc.subjectSearch tools
dc.subjectTopic identification
dc.subjectUser queries
dc.subjectNeural networks
dc.subject.scopusQuery Reformulation; Image Indexing; Digital Libraries
dc.subject.wosComputer science, information systems
dc.subject.wosInformation science & library science
dc.titleNeural network applications for automatic new topic identification
dc.typeArticle
dc.wos.quartileQ3
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/Endüstri Mühendisliği Bölümü
local.indexed.atScopus
local.indexed.atWOS

Files

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: