Yayın:
Some graph theoretical properties over zero-divisor graphs of special finite commutative rings

dc.contributor.authorAkgüneş, Nihat
dc.contributor.authorTogan, Müge
dc.contributor.buuauthorTogan, Müge
dc.contributor.departmentFen ve Edebiyat Fakültesi
dc.contributor.departmentMatematik Bölümü
dc.contributor.scopusid54403978300
dc.date.accessioned2025-08-06T23:26:00Z
dc.date.issued2012-04-01
dc.description.abstractLet R be a commutative ring with identity and let ℤ(R) be the set of zero-divisors of R. It has been widely studied the notion of the zero-divisor graph of R which is defined by ΓT(R) = ℤ(R) \{0} such that the 'distinct vertices x and y are adjacent if and only if xy = 0. As main results of this paper, by considering R = ℤ <inf>q×</inf>ℤ <inf>q</inf> for different primes p and q, we prove some graph theoretical properties over Γ(ℤ <inf>p</inf> × ℤ <inf>q</inf>) which are the generalizations of the results in [12].
dc.identifier.endpage315
dc.identifier.issn1229-3067
dc.identifier.issue2
dc.identifier.scopus2-s2.0-84861409591
dc.identifier.startpage305
dc.identifier.urihttps://hdl.handle.net/11452/53859
dc.identifier.volume22
dc.indexed.scopusScopus
dc.language.isoen
dc.relation.journalAdvanced Studies in Contemporary Mathematics Kyungshang
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subject.scopusGraph Theory Applications in Commutative Rings
dc.titleSome graph theoretical properties over zero-divisor graphs of special finite commutative rings
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentFen ve Edebiyat Fakültesi/Matematik Bölümü
local.indexed.atScopus

Dosyalar