Yayın:
Implementation of clustering algorithms for damage prediction through seismic local-site parameters: 2023 kahramanmaraş earthquake sequence

dc.contributor.authorKaraaslan, Hasan
dc.contributor.authorSilahtar, Ali
dc.contributor.authorErkan, Enes Furkan
dc.contributor.buuauthorŞenkaya, Mustafa
dc.contributor.buuauthorŞENKAYA, MUSTAFA
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentİnşaat Mühendisliği Ana Bilim Dalı.
dc.contributor.researcheridAAT-1446-2020
dc.date.accessioned2025-02-06T05:15:34Z
dc.date.available2025-02-06T05:15:34Z
dc.date.issued2024-09-04
dc.description.abstractThe latest earthquakes (Morrocco, Nepal, Sichuan - China, etc.) have highlighted the critical importance of local-site parameters on the vulnerability of existing building stock. The paper performs the clustering method based on the sub-surface parameters for structural damage prediction. The data set includes the damage status for 44 locations after the 2023 Kahramanmara & scedil; earthquake sequence and local site parameters: Vs30, predominant frequency (f0), horizontal to vertical spectral ratio value (A0), and engineering bedrock depth (VsD760). The Fuzzy C-Means (FCM) and Spectral Clustering (SC) algorithms are carried out on the pre-processed data set, including the sub-surface parameters for each location and the data set clustered into two-clusters within each method. Then, the estimated clusters are compared with the post-earthquake two clusters representing the cluster of damage and no-damage state for considered locations that composed through official damage assessment reports The FCM algorithm yielded a 90% accuracy compared to actual clusters, while the results of the SC algorithm indicated an 86% accuracy. Among the parameters, the VsD760 and f0 demonstrate the ability to establish a discernible demarcation by manifesting distinguishable clustering patterns. Notably, the Area Under the Curve of the Receiver Operating Characteristic (AUC-ROC) value is calculated at 97% and 85% for FCM and SC algorithms, respectively. The outcomes of this study offer the potential to predict the structural damage status of a location under a crucial seismic hazard in the pre-earthquake condition. This enables the development earthquake-resistant cities prior to earthquakes or implement necessary precautions to mitigate seismic risk in the afterward.
dc.identifier.doi10.1007/s10518-024-02003-x
dc.identifier.endpage6566
dc.identifier.issn1570-761X
dc.identifier.issue13
dc.identifier.scopus2-s2.0-85203065356
dc.identifier.startpage6545
dc.identifier.urihttps://doi.org/10.1007/s10518-024-02003-x
dc.identifier.urihttps://hdl.handle.net/11452/50111
dc.identifier.volume22
dc.identifier.wos001304395000002
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherSpringer
dc.relation.journalBulletin Of Earthquake Engineering
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.subjectSpectral methods
dc.subjectBuilding damage
dc.subjectRatio
dc.subjectArea
dc.subjectFcm
dc.subjectClustering
dc.subjectFuzzy-c mean
dc.subjectSpectral clustering
dc.subjectDamage prediction
dc.subjectEarthquake
dc.subjectScience & technology
dc.subjectTechnology
dc.subjectPhysical sciences
dc.subjectEngineering, geological
dc.subjectGeosciences, multidisciplinary
dc.subjectEngineering
dc.subjectGeology
dc.titleImplementation of clustering algorithms for damage prediction through seismic local-site parameters: 2023 kahramanmaraş earthquake sequence
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/İnşaat Mühendisliği Ana Bilim Dalı.
local.indexed.atWOS
local.indexed.atScopus
relation.isAuthorOfPublicationcf20d6db-0623-4cc6-80f3-ed914e0887f0
relation.isAuthorOfPublication.latestForDiscoverycf20d6db-0623-4cc6-80f3-ed914e0887f0

Dosyalar