Yayın:
Improved material generation algorithm by opposition-based learning and laplacian crossover for global optimization and advances in real-world engineering problems

dc.contributor.authorMehta, Pranav
dc.contributor.authorKumar, Sumit
dc.contributor.authorSait, Sadiq M.
dc.contributor.buuauthorYILDIZ, ALİ RIZA
dc.contributor.buuauthorYıldız, Betül S.
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentMakina Mühendisliği Ana Bilim Dalı
dc.contributor.researcheridF-7426-2011
dc.contributor.researcheridAAL-9234-2020
dc.date.accessioned2025-10-21T09:25:29Z
dc.date.issued2025-03-06
dc.description.abstractThe current study aims to utilize a unique hybrid optimizer called oppositional-based learning and laplacian crossover augmented material generation algorithm (MGA-OBL-LP) to solve engineering design problems. The oppositional-based learning and laplacian crossover approaches are used to address the local optima trap weakness of a recently discovered MGA algorithm that has been added to the fundamental MGA structure. The proposed hybridization strategy aimed to make it easier to improve the exploration-exploitation behavior of the MGA algorithm. The performance of the proposed hybridized algorithm was compared with other notable metaheuristics collected from the literature for four constrained engineering design problems in order to determine whether it would be practical in real-world applications. A comparison analysis is undertaken to confirm the MGA-OBL-LP algorithm's competence in terms of solution quality and stability, and it is discovered to be robust in addressing difficult practical problems.
dc.identifier.doi10.1515/mt-2024-0515
dc.identifier.endpage746
dc.identifier.issn0025-5300
dc.identifier.issue4
dc.identifier.startpage737
dc.identifier.urihttps://doi.org/10.1515/mt-2024-0515
dc.identifier.urihttps://hdl.handle.net/11452/56015
dc.identifier.volume67
dc.identifier.wos001437144800001
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherWalter de gruyter gmbh
dc.relation.journalMaterials testing
dc.subjectMetaheuristics
dc.subjectMaterial generation algorithm
dc.subjectOpposition-based learning
dc.subjectSpring design
dc.subjectSpur gear design
dc.subjectOptimization
dc.subjectScience & Technology
dc.subjectTechnology
dc.subjectMaterials Science, Characterization & Testing
dc.subjectMaterials Science
dc.titleImproved material generation algorithm by opposition-based learning and laplacian crossover for global optimization and advances in real-world engineering problems
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/Makina Mühendisliği Ana Bilim Dalı
local.indexed.atWOS
relation.isAuthorOfPublication89fd2b17-cb52-4f92-938d-a741587a848d
relation.isAuthorOfPublication.latestForDiscovery89fd2b17-cb52-4f92-938d-a741587a848d

Dosyalar

Orijinal seri

Şimdi gösteriliyor 1 - 1 / 1
Küçük Resim
Ad:
Yildiz_vd_2025.pdf
Boyut:
1.25 MB
Format:
Adobe Portable Document Format

Koleksiyonlar