Yayın:
Source attribution based on physical defects in light path

dc.contributor.authorDirik, Ahmet Emir
dc.contributor.buuauthorDİRİK, AHMET EMİR
dc.contributor.departmentMühendislik ve Mimarlık Fakültesi
dc.contributor.departmentElektronik Mühendisliği Bölümü
dc.contributor.orcid0000-0002-6200-1717
dc.contributor.scopusid23033658100
dc.date.accessioned2025-05-13T10:10:55Z
dc.date.issued2013-11-01
dc.description.abstractRecent studies in multimedia forensics show that digital images contain intrinsic patterns, traces, and marks generated by imaging pipeline components (sensor) and processes (demosaicing and color adjustment). Some of these patterns and marks, such as photo response non-uniformity noise (PRNU), are unique to individual component characteristics of imaging system. Similar to PRNU noise, physical defects in imaging pipeline such as dust particles in DSLR camera chamber, scratches on flatbed scanners also generate unique patterns in image output. Due to unique and random nature of these patterns, they can be utilized in digital image forensics problems. In this chapter, we will give an overview of state-of-the-art camera identification techniques which utilize such defects and patterns.
dc.identifier.doi10.1007/978-1-4614-0757-7_7
dc.identifier.endpage236
dc.identifier.scopus2-s2.0-84929133141
dc.identifier.startpage219
dc.identifier.urihttps://hdl.handle.net/11452/52497
dc.identifier.urihttps://link.springer.com/chapter/10.1007/978-1-4614-0757-7_7?utm_source=get
dc.identifier.volume9781461407577
dc.indexed.scopusScopus
dc.language.isoen
dc.publisherSpringer
dc.relation.journalDigital Image Forensics: There is More to a Picture than Meets the Eye
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subject.scopusDigital Forensics; Convolutional Neural Network; Image Processing
dc.titleSource attribution based on physical defects in light path
dc.typeBook Chapter
dspace.entity.typePublication
local.contributor.departmentMühendislik ve Mimarlık Fakültesi/Elektronik Mühendisliği Bölümü
local.indexed.atScopus
relation.isAuthorOfPublication37bb7eb8-5671-4304-8f09-5f48c51ec56f
relation.isAuthorOfPublication.latestForDiscovery37bb7eb8-5671-4304-8f09-5f48c51ec56f

Dosyalar