Yayın: Immersions preserved under rotations with totally reducible focal set
| dc.contributor.author | Ezentaş, Rıdvan | |
| dc.contributor.buuauthor | EZENTAŞ, RIDVAN | |
| dc.contributor.department | Fen ve Edebiyat Fakültesi | |
| dc.contributor.department | Matematik Bölümü | |
| dc.contributor.scopusid | 6506973222 | |
| dc.date.accessioned | 2025-08-07T07:18:32Z | |
| dc.date.issued | 1997-12-01 | |
| dc.description.abstract | In [1] Carter and the author introduced the idea of an immersion f : M <sup>m</sup> → R<sup>n</sup> with totally reducible focal set (TRFS). Such an immersion has the property that, for all p ∈ M, the focal set with base p is a union of hyperplanes in the normal plane to f(M) at f(p). Here we show that if we take two immersions with TRFS then we can construct new immersions with TRFS. In particular, rotating an immersion with TRFS about an axis gives a new immersion with TRFS. © TÜBİTAK. | |
| dc.identifier.endpage | 491 | |
| dc.identifier.issn | 1300-0098 | |
| dc.identifier.issue | 4 | |
| dc.identifier.scopus | 2-s2.0-53249119276 | |
| dc.identifier.startpage | 485 | |
| dc.identifier.uri | https://hdl.handle.net/11452/54428 | |
| dc.identifier.volume | 21 | |
| dc.indexed.scopus | Scopus | |
| dc.language.iso | en | |
| dc.relation.journal | Turkish Journal of Mathematics | |
| dc.rights | info:eu-repo/semantics/closedAccess | |
| dc.subject | Totally reducible focal sets | |
| dc.subject | Focal sets | |
| dc.subject | Focal points | |
| dc.subject | Flat normal bundles | |
| dc.subject | Critical point theory | |
| dc.subject.scopus | Geometry and Symmetry in Riemannian Spaces | |
| dc.title | Immersions preserved under rotations with totally reducible focal set | |
| dc.type | Article | |
| dspace.entity.type | Publication | |
| local.contributor.department | Fen ve Edebiyat Fakültesi/Matematik Bölümü | |
| local.indexed.at | Scopus | |
| relation.isAuthorOfPublication | 36442b60-58f5-4ac2-8337-df5093b054c9 | |
| relation.isAuthorOfPublication.latestForDiscovery | 36442b60-58f5-4ac2-8337-df5093b054c9 |
