Publication:
Automatic new topic identification in search engine transaction logs using multiple linear regression

dc.contributor.authorÖzmutlu, S.
dc.contributor.authorÖzmutlu, H.C.
dc.contributor.authorSpink, A.
dc.contributor.buuauthorÖZMUTLU, HÜSEYİN CENK
dc.contributor.buuauthorÖZMUTLU, SEDA
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentEndüstri Mühendisliği Ana Bilim Dalı
dc.contributor.scopusid6603660605
dc.contributor.scopusid6603061328
dc.date.accessioned2025-05-13T13:56:39Z
dc.date.issued2008-09-16
dc.description.abstractContent analysis of search engine user queries is an important task for search engine research, and identification of topic changes within a user search session is a key issue in content analysis of search engine user queries. The purpose of this study is to provide automatic new topic identification of search engine query logs, and estimate the effect of statistical characteristics of search engine queries on new topic identification. By applying multiple linear regression and ANOVA on a sample data log from the FAST search engine, we have reached the following findings: 1) We demonstrated that the statistical characteristics of Web search queries are effective on shifting to a new topic; 2) Multiple linear regression is a successful tool for estimating topic shifts and continuations. This study provides statistical proof for the relationship between the non-semantic characteristics of Web search queries and the occurrence of topic shifts and continuations. © 2008 IEEE.
dc.identifier.doi10.1109/HICSS.2008.70
dc.identifier.isbn[0769530753, 9780769530758]
dc.identifier.issn1530-1605
dc.identifier.scopus2-s2.0-51449103469
dc.identifier.urihttps://hdl.handle.net/11452/52674
dc.indexed.scopusScopus
dc.language.isoen
dc.relation.journalProceedings of the Annual Hawaii International Conference on System Sciences
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subject.scopusInformation Retrieval; Internet; Search Engine
dc.titleAutomatic new topic identification in search engine transaction logs using multiple linear regression
dc.typeConference Paper
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/ Endüstri Mühendisliği Ana Bilim Dalı
relation.isAuthorOfPublicationf621a75f-52a0-4022-a709-d298db143016
relation.isAuthorOfPublicationf49bf060-b2a9-469a-b736-2b4a29401a24
relation.isAuthorOfPublication.latestForDiscoveryf621a75f-52a0-4022-a709-d298db143016

Files

Collections