Yayın:
Machine learning-based maize (Zea mays L.) extraction at parcel level using Sentinel 2A-derived spectral indices

dc.contributor.buuauthorGündoğdu, Kemal Sulhi
dc.contributor.buuauthorGÜNDOĞDU, KEMAL SULHİ
dc.contributor.buuauthorBantchina, Bere Benjamin
dc.contributor.departmentZiraat Fakültesi
dc.contributor.departmentBiyosistem Mühendisliği Ana Bilim Dalı.
dc.contributor.orcid0000-0002-2593-426X
dc.contributor.researcheridJTU-4080-2023
dc.date.accessioned2025-02-05T05:52:15Z
dc.date.available2025-02-05T05:52:15Z
dc.date.issued2024-07-01
dc.description.abstractCrop type classification is crucial for policymaking and precision agriculture applications. This study aimed to develop a parcel-based maize (Zea mays L.) extraction approach using Sentinel 2A-derived spectral indices and machine learning (ML) in two distinct study sites: Ye & scedil;ilova and Ormankad & imath; villages in Bursa Province, Turkey. Employing 13 widely recognized spectral indices, the investigation implemented 4 ML classifiers: support vector machines, random forest, K-nearest neighbors, and bootstrap aggregating. The training-test methodology was explored using two scenarios: Ye & scedil;ilova as the training set and Ormankad & imath; as the test set, and vice versa. The models calibrated on Ye & scedil;ilova and validated on Ormankad & imath; maintained the accuracy of the model, with an overall accuracy (OA) ranging from 79.3% to 89.9%, precision between 72.8% and 80.1%, recall between 82.1% and 84.9%, F1-score between 77.4% and 82.2%, and a Matthews correlation coefficient (MCC) ranging from 58.9% to 68.3%. Furthermore, the models consistently demonstrated good performance when Ormankad & imath; served as the training set and Ye & scedil;ilova as the test set, with commendable OA (78.7% to 84.8%), precision (85.5% to 88.0%), recall (88.0% to 91.1%), F1-score (86.2% to 89.5%), and MCC (68.2% to 76.0%). This study demonstrated the potential of using high-resolution remote sensing and ML for effective maize crop extraction using diverse datasets.
dc.identifier.doi10.1117/1.JRS.18.034515
dc.identifier.issue3
dc.identifier.scopus2-s2.0-85206217906
dc.identifier.urihttps://doi.org/10.1117/1.JRS.18.034515
dc.identifier.urihttps://hdl.handle.net/11452/50077
dc.identifier.volume18
dc.identifier.wos001330379800010
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherSpie-soc Photo-optical Instrumentation Engineers
dc.relation.journalJournal Of Applied Remote Sensing
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.subjectLand-cover
dc.subjectVegetation
dc.subjectClassification
dc.subjectReflectance
dc.subjectAlgorithms
dc.subjectImages
dc.subjectColor
dc.subjectCrop type classification
dc.subjectMachine learning
dc.subjectMaize
dc.subjectHyperspectral remote sensing
dc.subjectSentinel 2a
dc.subjectSpectral indices
dc.subjectScience & technology
dc.subjectLife sciences & biomedicine
dc.subjectTechnology
dc.subjectEnvironmental sciences
dc.subjectRemote sensing
dc.subjectImaging science & photographic technology
dc.titleMachine learning-based maize (Zea mays L.) extraction at parcel level using Sentinel 2A-derived spectral indices
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentZiraat Fakültesi/Biyosistem Mühendisliği Ana Bilim Dalı.
local.indexed.atWOS
local.indexed.atScopus
relation.isAuthorOfPublication09d5e02c-facd-49b4-ba46-64ae7fb0c90c
relation.isAuthorOfPublication.latestForDiscovery09d5e02c-facd-49b4-ba46-64ae7fb0c90c

Dosyalar