Publication: Optical bandgap of semiconductor nanostructures: Methods for experimental data analysis
dc.contributor.author | Raciti, Rosario | |
dc.contributor.author | Bahariqushchi, Rahim | |
dc.contributor.author | Terrasi, Antonio | |
dc.contributor.author | Mirabella, Salvo | |
dc.contributor.author | Summonte, Caterina | |
dc.contributor.buuauthor | Aydınlı, Atilla | |
dc.contributor.department | Mühendislik Mimarlık Fakültesi | |
dc.contributor.department | Elektrik Elektronik Mühendisliği Bölümü | |
dc.contributor.researcherid | ABI-7535-2020 | |
dc.contributor.scopusid | 7005432613 | |
dc.date.accessioned | 2022-12-28T05:52:17Z | |
dc.date.available | 2022-12-28T05:52:17Z | |
dc.date.issued | 2017-06-21 | |
dc.description.abstract | Determination of the optical bandgap (E-g) in semiconductor nanostructures is a key issue in understanding the extent of quantum confinement effects (QCE) on electronic properties and it usually involves some analytical approximation in experimental data reduction and modeling of the light absorption processes. Here, we compare some of the analytical procedures frequently used to evaluate the optical bandgap from reflectance (R) and transmittance (T) spectra. Ge quantum wells and quantum dots embedded in SiO2 were produced by plasma enhanced chemical vapor deposition, and light absorption was characterized by UV-Vis/NIR spectrophotometry. R&T elaboration to extract the absorption spectra was conducted by two approximated methods (single or double pass approximation, single pass analysis, and double pass analysis, respectively) followed by Eg evaluation through linear fit of Tauc or Cody plots. Direct fitting of R&T spectra through a Tauc-Lorentz oscillator model is used as comparison. Methods and data are discussed also in terms of the light absorption process in the presence of QCE. The reported data show that, despite the approximation, the DPA approach joined with Tauc plot gives reliable results, with clear advantages in terms of computational efforts and understanding of QCE. | |
dc.description.sponsorship | ENERGETIC - PON00355_3391233 | |
dc.description.sponsorship | MIUR under project Beyond-Nano - PON a3_00363 | |
dc.identifier.citation | Raciti, R. vd. (2017). ''Optical bandgap of semiconductor nanostructures: Methods for experimental data analysis''. Journal of Applied Physics, 121(23). | |
dc.identifier.issn | 0021-8979 | |
dc.identifier.issue | 23 | |
dc.identifier.scopus | 2-s2.0-85021121905 | |
dc.identifier.uri | https://doi.org/10.1063/1.4986436 | |
dc.identifier.uri | https://aip.scitation.org/doi/10.1063/1.4986436 | |
dc.identifier.uri | 1089-7550 | |
dc.identifier.uri | http://hdl.handle.net/11452/30121 | |
dc.identifier.volume | 121 | |
dc.identifier.wos | 000404047400016 | |
dc.indexed.wos | SCIE | |
dc.language.iso | en | |
dc.publisher | AIP Publishing | |
dc.relation.collaboration | Yurt içi | |
dc.relation.collaboration | Yurt dışı | |
dc.relation.journal | Journal of Applied Physics | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi | |
dc.relation.tubitak | 211T142 | |
dc.rights | info:eu-repo/semantics/closedAccess | |
dc.subject | Physics | |
dc.subject | Germanium quantum dots | |
dc.subject | Silicon nanostructures | |
dc.subject | Amorphous-germanium | |
dc.subject | Confinement | |
dc.subject | Absorption | |
dc.subject | Nanocrystals | |
dc.subject | Dependence | |
dc.subject | Matrix | |
dc.subject | GAP | |
dc.subject | Electromagnetic wave absorption | |
dc.subject | Electronic properties | |
dc.subject | Energy gap | |
dc.subject | Germanium | |
dc.subject | Light absorption | |
dc.subject | Nanostructures | |
dc.subject | Optical band gaps | |
dc.subject | Plasma CVD | |
dc.subject | Plasma enhanced chemical vapor deposition | |
dc.subject | Absorption process | |
dc.subject | Analytical approximation | |
dc.subject | Analytical procedure | |
dc.subject | Computational effort | |
dc.subject | Experimental data analysis | |
dc.subject | Lorentz oscillator model | |
dc.subject | Quantum confinement effects | |
dc.subject | Semiconductor nanostructures | |
dc.subject | Chemical analysis | |
dc.subject.scopus | Germanium; Sige; Nanocrystal | |
dc.subject.wos | Physics, applied | |
dc.title | Optical bandgap of semiconductor nanostructures: Methods for experimental data analysis | |
dc.type | Article | |
dc.wos.quartile | Q2 | |
dspace.entity.type | Publication | |
local.contributor.department | Mühendislik Mimarlık Fakültesi/Elektrik Elektronik Mühendisliği Bölümü | |
local.indexed.at | Scopus | |
local.indexed.at | WOS |
Files
License bundle
1 - 1 of 1
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: