Publication:
Optical bandgap of semiconductor nanostructures: Methods for experimental data analysis

dc.contributor.authorRaciti, Rosario
dc.contributor.authorBahariqushchi, Rahim
dc.contributor.authorTerrasi, Antonio
dc.contributor.authorMirabella, Salvo
dc.contributor.authorSummonte, Caterina
dc.contributor.buuauthorAydınlı, Atilla
dc.contributor.departmentMühendislik Mimarlık Fakültesi
dc.contributor.departmentElektrik Elektronik Mühendisliği Bölümü
dc.contributor.researcheridABI-7535-2020
dc.contributor.scopusid7005432613
dc.date.accessioned2022-12-28T05:52:17Z
dc.date.available2022-12-28T05:52:17Z
dc.date.issued2017-06-21
dc.description.abstractDetermination of the optical bandgap (E-g) in semiconductor nanostructures is a key issue in understanding the extent of quantum confinement effects (QCE) on electronic properties and it usually involves some analytical approximation in experimental data reduction and modeling of the light absorption processes. Here, we compare some of the analytical procedures frequently used to evaluate the optical bandgap from reflectance (R) and transmittance (T) spectra. Ge quantum wells and quantum dots embedded in SiO2 were produced by plasma enhanced chemical vapor deposition, and light absorption was characterized by UV-Vis/NIR spectrophotometry. R&T elaboration to extract the absorption spectra was conducted by two approximated methods (single or double pass approximation, single pass analysis, and double pass analysis, respectively) followed by Eg evaluation through linear fit of Tauc or Cody plots. Direct fitting of R&T spectra through a Tauc-Lorentz oscillator model is used as comparison. Methods and data are discussed also in terms of the light absorption process in the presence of QCE. The reported data show that, despite the approximation, the DPA approach joined with Tauc plot gives reliable results, with clear advantages in terms of computational efforts and understanding of QCE.
dc.description.sponsorshipENERGETIC - PON00355_3391233
dc.description.sponsorshipMIUR under project Beyond-Nano - PON a3_00363
dc.identifier.citationRaciti, R. vd. (2017). ''Optical bandgap of semiconductor nanostructures: Methods for experimental data analysis''. Journal of Applied Physics, 121(23).
dc.identifier.issn0021-8979
dc.identifier.issue23
dc.identifier.scopus2-s2.0-85021121905
dc.identifier.urihttps://doi.org/10.1063/1.4986436
dc.identifier.urihttps://aip.scitation.org/doi/10.1063/1.4986436
dc.identifier.uri1089-7550
dc.identifier.urihttp://hdl.handle.net/11452/30121
dc.identifier.volume121
dc.identifier.wos000404047400016
dc.indexed.wosSCIE
dc.language.isoen
dc.publisherAIP Publishing
dc.relation.collaborationYurt içi
dc.relation.collaborationYurt dışı
dc.relation.journalJournal of Applied Physics
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.relation.tubitak211T142
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectPhysics
dc.subjectGermanium quantum dots
dc.subjectSilicon nanostructures
dc.subjectAmorphous-germanium
dc.subjectConfinement
dc.subjectAbsorption
dc.subjectNanocrystals
dc.subjectDependence
dc.subjectMatrix
dc.subjectGAP
dc.subjectElectromagnetic wave absorption
dc.subjectElectronic properties
dc.subjectEnergy gap
dc.subjectGermanium
dc.subjectLight absorption
dc.subjectNanostructures
dc.subjectOptical band gaps
dc.subjectPlasma CVD
dc.subjectPlasma enhanced chemical vapor deposition
dc.subjectAbsorption process
dc.subjectAnalytical approximation
dc.subjectAnalytical procedure
dc.subjectComputational effort
dc.subjectExperimental data analysis
dc.subjectLorentz oscillator model
dc.subjectQuantum confinement effects
dc.subjectSemiconductor nanostructures
dc.subjectChemical analysis
dc.subject.scopusGermanium; Sige; Nanocrystal
dc.subject.wosPhysics, applied
dc.titleOptical bandgap of semiconductor nanostructures: Methods for experimental data analysis
dc.typeArticle
dc.wos.quartileQ2
dspace.entity.typePublication
local.contributor.departmentMühendislik Mimarlık Fakültesi/Elektrik Elektronik Mühendisliği Bölümü
local.indexed.atScopus
local.indexed.atWOS

Files

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: