Yayın:
Comparison of tree-based methods used in survival data

dc.contributor.authorYabacı, Ayşegül
dc.contributor.authorSıǧırlı, Deniz
dc.contributor.buuauthorSIĞIRLI, DENİZ
dc.contributor.departmentTıp Fakültesi
dc.contributor.departmentBiyoistatistik Anabilim Dalı
dc.contributor.scopusid24482063400
dc.date.accessioned2025-05-13T06:37:13Z
dc.date.issued2022-03-01
dc.description.abstractSurvival trees and forests are popular non-parametric alternatives to parametric and semi-parametric survival models. Conditional inference trees (Ctree) form a non-parametric class of regression trees embedding tree-structured regression models into a well-defined theory of conditional inference procedures. The Ctree is applicable in a varietyof regression-related issues, involving nominal, ordinal, numeric, censored, as well as multivariate response variables and arbitrary measurement scales of covariates. Conditional inference forests (Cforest) consitute a survival forest method which combines a large number of Ctrees. The Cforest provides a unified and flexible framework for ensemble learning in the presence of censoring. The random survival forests (RSF) methodology extends the random forests method enabling the approximation of rich classes of functions while maintaining generalisation errors low. In the present study, the Ctree, Cforest and RSF methods are discussed in detail and the performances of the survival forest methods, namely the Cforest and RSF have been compared with a simulation study. The results of the simulation demonstrate that the RSF method with a log-rank score distinction criteria outperforms the Cforest and the RSF with log-rank distinction criteria.
dc.identifier.doi10.2478/stattrans-2022-0002
dc.identifier.endpage28
dc.identifier.issn1234-7655
dc.identifier.issue1
dc.identifier.scopus2-s2.0-85140755586
dc.identifier.startpage21
dc.identifier.urihttps://hdl.handle.net/11452/51700
dc.identifier.volume23
dc.indexed.scopusScopus
dc.language.isoen
dc.publisherSciendo
dc.relation.journalStatistics in Transition New Series
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectTree-based methods
dc.subjectRandom survival forests
dc.subjectConditional inference trees
dc.subjectConditional inference forests
dc.subject.scopusSurvival Analysis; Deep Learning; Data Mining
dc.titleComparison of tree-based methods used in survival data
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentTıp Fakültesi/Biyoistatistik Anabilim Dalı
local.indexed.atScopus
relation.isAuthorOfPublicationf8b7b771-12ea-4f9a-889d-25079d8c862d
relation.isAuthorOfPublication.latestForDiscoveryf8b7b771-12ea-4f9a-889d-25079d8c862d

Dosyalar

Orijinal seri

Şimdi gösteriliyor 1 - 1 / 1
Küçük Resim
Ad:
Sığırlı_2022.pdf
Boyut:
323.52 KB
Format:
Adobe Portable Document Format