Yayın:
Distance-normal congruence of rotational surfaces in euclidean 3-space

dc.contributor.authorSokur, Betül Bulca
dc.contributor.buuauthorBULCA SOKUR, BETÜL
dc.contributor.departmentFen ve Edebiyat Fakültesi
dc.contributor.departmentMatematik Bölümü
dc.contributor.orcid0000-0001-5861-0184
dc.contributor.researcheridAAG-7693-2021
dc.date.accessioned2025-10-17T11:21:30Z
dc.date.issued2025-01-01
dc.description.abstractIn this study, we considered simple linear congruences of some curves/surfaces to generate parametric families of curves/surfaces. The method depends essentially on the position vector of a curve/surface and its signed unit normal. The shape of the normal congruence of the curve/surface can be predictably changed based on the sign of its unit normal. On the other hand, symmetry of surfaces refers to invariance under transformations such as reflections, rotations, or translations, which can also involve normal congruence. Considering the normal congruences of the surface of revolution to be minimal, some results on the meridian curves are obtained. Furthermore, some surface models are constructed over the meridian curves.
dc.identifier.doi10.1155/jom/4572689
dc.identifier.issn2314-4629
dc.identifier.issue1
dc.identifier.scopus2-s2.0-105013742120
dc.identifier.urihttps://doi.org/10.1155/jom/4572689
dc.identifier.urihttps://hdl.handle.net/11452/55643
dc.identifier.volume2025
dc.identifier.wos001551777400001
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherWiley
dc.relation.journalJournal of mathematics
dc.subjectOffset curves
dc.subjectComputation
dc.subjectDistance normal
dc.subjectMeridian curve
dc.subjectNormal congruence
dc.subjectRotational surface
dc.subjectScience & technology
dc.subjectPhysical sciences
dc.subjectMathematics
dc.titleDistance-normal congruence of rotational surfaces in euclidean 3-space
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentFen ve Edebiyat Fakültesi/Matematik Bölümü
local.indexed.atWOS
local.indexed.atScopus
relation.isAuthorOfPublication45c31521-1d02-466d-902b-10f1e471b1d8
relation.isAuthorOfPublication.latestForDiscovery45c31521-1d02-466d-902b-10f1e471b1d8

Dosyalar

Orijinal seri

Şimdi gösteriliyor 1 - 1 / 1
Küçük Resim
Ad:
Sokur_2025.pdf
Boyut:
3.07 MB
Format:
Adobe Portable Document Format