Publication:
Exploration of interactional phenomena and multi-wave solutions of the fractional-order dual-mode nonlinear schrödinger equation

dc.contributor.authorKopçasız, Bahadır
dc.contributor.authorYaşar, Emrullah
dc.contributor.buuauthorKopçasız, Bahadır
dc.contributor.buuauthorYAŞAR, EMRULLAH
dc.contributor.departmentFen Edebiyat
dc.contributor.departmentFakültesi Matematik Bölümü
dc.contributor.orcid0000-0002-6364-3631
dc.contributor.orcid0000-0003-4732-5753
dc.contributor.researcheridJSK-4572-2023
dc.contributor.researcheridAAG-9947-2021
dc.date.accessioned2024-09-27T06:57:40Z
dc.date.available2024-09-27T06:57:40Z
dc.date.issued2023-11-27
dc.description.abstractThis work concerns the fractional-order dual-mode nonlinear Schrodinger equation (FDMNLSE), which portrays the augmentation or absorption of dual waves. This model dissects the concurrent generation of two characteristic waves dealing with dual modes and introduces three physical parameters: nonlinearity, phase velocity, and dispersive factor. In the context of photonics, NLSE models the propagation of soliton pulses over intercontinental distances. Throughout this work, the fractional derivative is given in terms of time and space conformable sense. We analyze the multi-waves method, homoclinic breather approach, and interactional solution with the double exp$$ \mathit{\exp} $$-functions procedure, and their applications for this equation are obtained using logarithmic transformation. The multi-wave method is a well-known phenomenon in nonlinear science that describes the interaction of three waves that satisfy certain resonance conditions. A breather wave is a localized and oscillatory solution that maintains its shape over time. Finally, we will discuss the dynamics of our newly obtained solutions with the help of graphs by assigning appropriate values to the parameters. The proposed methods are straight and aggressive, so the approved form can be extended for more nonlinear models. The findings are exceptional in comparison to previous findings in the literature. These outcomes may have significance for additional investigation of such frameworks to handle the nonlinear issues in applied sciences. The obtained results help us understand fluid propagation and incompressible fluids.
dc.identifier.doi10.1002/mma.9762
dc.identifier.eissn1099-1476
dc.identifier.endpage2534
dc.identifier.issn0170-4214
dc.identifier.issue4
dc.identifier.scopus2-s2.0-85178032816
dc.identifier.startpage2516
dc.identifier.urihttps://doi.org/10.1002/mma.9762
dc.identifier.urihttps://onlinelibrary.wiley.com/doi/10.1002/mma.9762
dc.identifier.urihttps://hdl.handle.net/11452/45376
dc.identifier.volume47
dc.identifier.wos001108887200001
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherWiley
dc.relation.journalMathematical Methods In The Applied Sciences
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectOptical solitons
dc.subjectSolitary wave
dc.subjectDark
dc.subjectBreathers
dc.subjectKerr
dc.subjectConformable derivative
dc.subjectFractional dual mode nonlinear schrodinger equation
dc.subjectMulti-wave solutions
dc.subjectScience & technology
dc.subjectPhysical sciences
dc.subjectMathematics, applied
dc.subjectMathematics
dc.titleExploration of interactional phenomena and multi-wave solutions of the fractional-order dual-mode nonlinear schrödinger equation
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentFen Edebiyat/Fakültesi Matematik Bölümü
local.indexed.atWOS
local.indexed.atScopus
relation.isAuthorOfPublicationa5ff66ef-0c87-4d77-a467-e3150f51624c
relation.isAuthorOfPublication.latestForDiscoverya5ff66ef-0c87-4d77-a467-e3150f51624c

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Kopçasız_Yaşar_2024.pdf
Size:
20.87 MB
Format:
Adobe Portable Document Format