Yayın:
Real-time anomaly detection in Industry 4.0 with the help of the Asset Administration Shell.

dc.contributor.authorKaya, Fatih
dc.contributor.authorÜnal, Asya
dc.contributor.authorAlbayrak, Özlem
dc.contributor.authorÜnal, Perin
dc.contributor.authorKırcı, Pınar
dc.contributor.buuauthorKAYA, FATİH
dc.contributor.buuauthorKIRCI, PINAR
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentBilgisayar Mühendisliği Bölümü
dc.contributor.orcid0009-0000-0457-0834
dc.contributor.scopusid59732187000
dc.contributor.scopusid15026635000
dc.date.accessioned2025-11-28T08:02:19Z
dc.date.issued2026-01-01
dc.description.abstractThe rapid advancement of Industry 4.0 necessitates robust and interoperable digital twin technologies supported by structured semantic frameworks such as the Asset Administration Shell (AAS). This paper systematically explores aspects of Industry 4.0 implementations, including semantic interoperability via AAS, standardized data formats such as AASX, time-series data management, and middleware solutions. Emphasis is placed on unsupervised anomaly detection techniques—Median Absolute Deviation (MAD) and Mahalanobis Distance—within industrial streaming data environments. Utilizing a case study, sensor data were analyzed through a developed Eclipse BaSyx plugin integrated with InfluxDB and MQTT, demonstrating effective real-time anomaly detection. The findings underscore the importance of adaptable and standardized semantic integration for achieving optimized operational efficiency in Industry 4.0.
dc.identifier.doi10.1007/978-3-032-02060-4_8
dc.identifier.endpage128
dc.identifier.isbn[9783032020598]
dc.identifier.issn0302-9743
dc.identifier.scopus2-s2.0-105014124535
dc.identifier.startpage114
dc.identifier.urihttps://hdl.handle.net/11452/56872
dc.identifier.volume16066 LNCS
dc.indexed.scopusScopus
dc.language.isoen
dc.publisherSpringer
dc.relation.journalLecture Notes in Computer Science
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectMedian absolute deviation
dc.subjectMahalanobis distance
dc.subjectIndustry 4.0
dc.subjectAsset administration shell
dc.subjectAnomaly detection
dc.subject.scopusInteroperability and Digital Twins in Industry 4.0
dc.titleReal-time anomaly detection in Industry 4.0 with the help of the Asset Administration Shell.
dc.typeConference Paper
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/Bilgisayar Mühendisliği Bölümü
local.indexed.atScopus
relation.isAuthorOfPublication98e61b0c-facd-4f3d-8a66-f7ad9e536094
relation.isAuthorOfPublication0270c3e7-f379-4f0e-84dd-a83c2bbf0235
relation.isAuthorOfPublication.latestForDiscovery98e61b0c-facd-4f3d-8a66-f7ad9e536094

Dosyalar