Yayın:
Some algebraic relations on integer sequences involving oblong and balancing numbers

Placeholder

Tarih

Akademik Birimler

Kurum Yazarları

Tekcan, Ahmet
Eraşık, Meltem E.

Yazarlar

Özkoç, Arzu

Danışman

Dil

Türü

Yayıncı:

Charles Babbage Research Centre

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Özet

Let k >= 0 be an integer. Oblong (pronic) numbers are numbers of the form O-k = k(k+1). In this work, we set a new integer sequence B = B-n(k) defined as B-0 = 0, B-1 = 1 and B-n = O-k Bn-1 - Bn-2 for n >= 2 and then derived some algebraic relations on it. Later, we give some new results on balancing numbers via oblong numbers.

Açıklama

Kaynak:

Anahtar Kelimeler:

Konusu

Mathematics, Fibonacci numbers, Lucas numbers, Pell numbers, Oblong numbers, Balancing numbers, Binary linear recurrences, Circulant matrix, Spectral norm, Simple continued fraction expansion, Cross-ratio

Alıntı

Tekcan, A. vd. (2016). "Some algebraic relations on integer sequences involving oblong and balancing numbers". Ars Combinatoria, 128, 11-31.

Endorsement

Review

Supplemented By

Referenced By

6

Views

0

Downloads