Publication:
Ensemble of effect size methods based on meta fuzzy functions

dc.contributor.authorTak, Aysegül Yabacı
dc.contributor.buuauthorErcan, İlker
dc.contributor.buuauthorERCAN, İLKER
dc.contributor.departmentBursa Uludağ Üniversitesi/Tıp Fakültesi/Biyoistatistik Anabilim Dalı.
dc.contributor.orcid0000-0002-2382-290X
dc.date.accessioned2024-11-06T06:04:27Z
dc.date.available2024-11-06T06:04:27Z
dc.date.issued2023-01-05
dc.description.abstractMany methods are used in the literature to determine the effect size (ES) for two independent groups. Many of these methods yield consistent results under the assumptions of normality of data and homogeneity of variances. However, not every dataset can provide these assumptions. In order to overcome the limitations mentioned, this study proposes the use of meta fuzzy effect size functions (MFESF). The MFESF weights six ES methods (Cohen's d, Hedge's g, and Glass' delta, Cliff's delta, Vargha and Delaney A and Glass' rank-biserial correlation) used for two independent groups according to their performances and provides better outcomes, regardless of assumptions. The MFESF method uses the fuzzy c-means (FCM) clustering algorithm to combine the selected ES methods. In this study, MFESF is evaluated by using generated datasets based on normal and non-normal distribution for six reference values. In addition, the performance of MFESF is evaluated by using real datasets with normal and non-normal distributions. As a result, the MFESF performed the best with the lowest mean absolute percentage error (MAPE) compared to the individual ES methods for all datasets.
dc.identifier.doi10.1016/j.engappai.2022.105804
dc.identifier.issn0952-1976
dc.identifier.urihttps://doi.org/10.1016/j.engappai.2022.105804
dc.identifier.urihttps://hdl.handle.net/11452/47469
dc.identifier.volume119
dc.identifier.wos000918352300001
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherPergamon-elsevier Science Ltd
dc.relation.journalEngineering Applications Of Artificial Intelligence
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectForecast combination
dc.subjectConfidence-interval
dc.subjectStatistics
dc.subjectEffect size
dc.subjectParametric effect size
dc.subjectNon-parametric effect size
dc.subjectMeta fuzzy functions
dc.subjectScience & technology
dc.subjectTechnology
dc.subjectAutomation & control systems
dc.subjectComputer science, artificial intelligence
dc.subjectEngineering, multidisciplinary
dc.subjectEngineering, electrical & electronic
dc.subjectAutomation & control systems
dc.subjectComputer science
dc.subjectEngineering
dc.titleEnsemble of effect size methods based on meta fuzzy functions
dc.typeArticle
dspace.entity.typePublication
relation.isAuthorOfPublication50e4dfdb-25cd-43af-94c9-464881669605
relation.isAuthorOfPublication.latestForDiscovery50e4dfdb-25cd-43af-94c9-464881669605

Files

Collections