Yayın:
Forensic dental age estimation with deep learning: A modified xception model for panoramic x-ray images

dc.contributor.authorYılmaz, Ercüment
dc.contributor.authorKış, Hatice Cansu
dc.contributor.authorCanger, Emin Murat
dc.contributor.authorÖztaş, Bengi
dc.contributor.buuauthorGÖRÜRGÖZ, CANSU
dc.contributor.departmentDiş Hekimliği Fakültesi
dc.contributor.departmentAğız Diş ve Çene Radyolojisi Ana Bilim Dalı
dc.contributor.orcid0000-0002-3712-7086
dc.contributor.researcheridAAQ-4576-2020
dc.date.accessioned2025-10-21T09:44:22Z
dc.date.issued2025-02-12
dc.description.abstractPurposeThis study aimed to develop an improved method for forensic age estimation using deep learning models applied to orthopantomography (OPG) images, focusing on distinguishing individuals under 12 years old from those aged 12 and above.MethodsA dataset of 1941 pediatric patients aged between five and 15 years was collected from two radiology departments. The primary research question addressed the identification of the most effective deep learning model for this task. Various deep learning models including Xception, ResNet, ShuffleNet, InceptionV3, DarkNet, NasNet, DenseNet, EfficientNet, MobileNet, ResNet18, GoogleNet, SqueezeNet, and AlexNet were evaluated using traditional metrics like Classification Accuracy (CA), Sensitivity (SE), Specificity (SP), Kappa (K), Area Under the Curve (AUC), alongside a novel Polygon Area Metric (PAM) designed to handle imbalanced datasets common in forensic applications.Results"Forensic Xception" model derived from Xception outperformed others, achieving a PAM score of 0.8828. This model demonstrated superior performance in accurately classifying individuals' age groups, with high CA, SE, SP, K, AUC, and F1 Score. Notably, the introduction of the PAM metric provided a comprehensive evaluation of classifier performance.ConclusionThis study represents a significant advancement in forensic age estimation from OPG images, emphasizing the potential of deep learning models, particularly the "Forensic Xception" model, in accurately classifying individuals based on age, especially in legal contexts. This research suggests a promising avenue for further advancements in forensic dental age estimation, with future studies encouraged to explore additional datasets, refine models, and address ethical and legal considerations.
dc.description.sponsorshipKaradeniz Technical University Scientific Research Projects (BAP)- Research Infrastructure Project -- BAP04 TAY-2022-10040 FAY-2023-10557
dc.identifier.doi10.1007/s12024-025-00962-4
dc.identifier.endpage579
dc.identifier.issn1547-769X
dc.identifier.issue2
dc.identifier.scopus2-s2.0-85218247175
dc.identifier.startpage565
dc.identifier.urihttps://doi.org/10.1007/s12024-025-00962-4
dc.identifier.urihttps://hdl.handle.net/11452/56165
dc.identifier.volume21
dc.identifier.wos001418900400001
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherHumana press inc
dc.relation.journalForensic science medicine and pathology
dc.relation.tubitakTUBİTAK
dc.subjectForensic diagnostic
dc.subjectDental age estimation
dc.subjectMinimum age of criminal responsibility
dc.subjectDeep learning
dc.subjectXception
dc.subjectScience & Technology
dc.subjectLife Sciences & Biomedicine
dc.subjectMedicine, Legal
dc.subjectLegal Medicine
dc.subjectPathology
dc.titleForensic dental age estimation with deep learning: A modified xception model for panoramic x-ray images
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentDiş Hekimliği Fakültesi/Ağız Diş ve Çene Radyolojisi Ana Bilim Dalı
local.indexed.atWOS
local.indexed.atScopus
relation.isAuthorOfPublication5aadd984-520f-41dd-929f-bc32af5218c0
relation.isAuthorOfPublication.latestForDiscovery5aadd984-520f-41dd-929f-bc32af5218c0

Dosyalar

Orijinal seri

Şimdi gösteriliyor 1 - 1 / 1
Küçük Resim
Ad:
Gorurgoz_vd_2025.pdf
Boyut:
2.82 MB
Format:
Adobe Portable Document Format