Publication:
Biharmonik eğriler ve yüzeyler

dc.contributor.advisorArslan, Kadri
dc.contributor.authorTürkay, Selen
dc.contributor.departmentFen Bilimleri Enstitüsü
dc.contributor.departmentMatematik Ana Bilim Dalı
dc.date.accessioned2019-12-17T11:28:10Z
dc.date.available2019-12-17T11:28:10Z
dc.date.issued2004-06-16
dc.description.abstractBu çalışmada IRn deki harmonik ortalama eğrilikîi eğriler ve yüzeyler ele alınmıştır. Bu tür eğriler ve yüzeyler biharmonik eğriler ve yüzeyler olarak adlandırılır. Bu tez yedi bölümden oluşmaktadır. Birinci bölüm giriş bölümüdür. İkinci bölümde çalışmanın ilerideki bölümlerinde kullanılan tanım ve kavramlar verilmiştir. Üçüncü bölümde IRn deki biharmonik eğriler incelenmiştir. Dördüncü bölümde altmanifoldlann normal eğrilik ile normal torsiyonlan ele alınmış ve M c IEn+d altmanifoldunun R kümesine ait olması için gerek ve yeter şart M nin P2-PNS özelikli olması sonucu elde edilmiştir. Beşinci bölüm orijinal sonuçlar içermekte olup bu bölümde, H-normal torsiyon tanımlanmış ve bazı yüzeylerin H-normal torsiyonu hesaplanmıştır. Ayrıca Vrenceannu yüzeyinin H-normal torsiyonu sıfıra eşit ise bu yüzeyin iki çemberin tensör çarpımı olduğu gösterilmiştir. Altıncı bölümde biharmonik hiperyüzeyler incelenmiştir. Yedinci bölümde normal flat biharmonik yüzeyler ele alınmıştır.
dc.description.abstractIn this thesis we consider curves and surfaces in IRn with harmonic mean curvature vector H which are called biharmonic. This study consists of seven chapters. The first chapter is introduction. In the second chapter, some basic definitions and notions which will be used in other chapters are given. In the third chapter, some examples of biharmonic curves in IRn are given. In the fourth chapter, normal curvature and normal torsion of the submanifolds M c IEn+d are considered. In the fifth chapter, some orginal results are obtained, H-normal torsion is defined and some examples are given. It has been proved that if the Vrenceannu surface has vanishing H-normal torsion then it must be a tensor product of two plane circles. In the sixth chapter, biharmonic hipersurfaces are considered. In the final chapter, normaly flat, biharmonic surfaces are investigated.
dc.format.extentVI, 80 sayfa
dc.identifier.citationTürkay, S. (2004). Biharmonik eğriler ve yüzeyler. Yayınlanmamış yüksek lisans tezi. Uludağ Üniversitesi Fen Bilimleri Enstitüsü.
dc.identifier.urihttp://hdl.handle.net/11452/3386
dc.language.isotr
dc.publisherUludağ Üniversitesi
dc.relation.publicationcategoryTez
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectMatematik
dc.subjectMathematics
dc.titleBiharmonik eğriler ve yüzeyler
dc.title.alternativeBiharmonic curves and surfaces
dc.typemasterThesis
dspace.entity.typePublication
local.contributor.departmentFen Bilimleri Enstitüsü/Matematik Ana Bilim Dalı

Files

Original bundle

Now showing 1 - 1 of 1
Placeholder
Name:
154069.pdf
Size:
6.78 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: